
Mitsuba Documentation

Version 0.4.4

Wenzel Jakob

February 28, 2013

Contents Contents

Contents

I. Using Mitsuba 7

1. About Mitsuba 7

2. Limitations 8

3. License 8

4. Compiling the renderer 9

4.1. Common steps . 9

4.1.1. Build conigurations . 9

4.1.2. Selecting a coniguration . 10

4.2. Compilation lags . 10

4.3. Building on Debian or Ubuntu Linux . 11

4.3.1. Creating Debian or Ubuntu Linux packages 12

4.3.2. Releasing Ubuntu packages . 12

4.4. Building on Fedora Core . 13

4.4.1. Creating Fedora Core packages . 13

4.5. Building on Arch Linux . 13

4.5.1. Creating Arch Linux packages . 14

4.6. Building on Windows . 14

4.6.1. Integration with the Visual Studio interface 15

4.7. Building on Mac OS X . 15

5. Basic usage 16

5.1. Interactive frontend . 16

5.2. Command line interface . 16

5.2.1. Passing parameters . 18

5.2.2. Writing partial images to disk . 19

5.2.3. Rendering an animation . 19

5.3. Direct connection server . 19

5.4. Utility launcher . 20

5.4.1. Tonemapper . 20

6. Scene ile format 22

6.1. Property types . 24

6.1.1. Numbers . 24

6.1.2. Strings . 24

6.1.3. Color spectra . 24

6.1.4. Vectors, Positions . 26

6.1.5. Transformations . 26

6.2. Animated transformations . 27

6.3. References . 28

2

Contents Contents

6.4. Including external iles . 29

6.5. Aliases . 29

7. Miscellaneous topics 30

7.1. A word about color spaces . 30

7.1.1. Spectral rendering . 30

8. Plugin reference 31

8.1. Shapes . 32

8.1.1. Cube intersection primitive (cube) . 34

8.1.2. Sphere intersection primitive (sphere) . 35

8.1.3. Cylinder intersection primitive (cylinder) 37

8.1.4. Rectangle intersection primitive (rectangle) 38

8.1.5. Disk intersection primitive (disk) . 39

8.1.6. Wavefront OBJ mesh loader (obj) . 40

8.1.7. PLY (Stanford Triangle Format) mesh loader (ply) 43

8.1.8. Serialized mesh loader (serialized) . 44

8.1.9. Shape group for geometry instancing (shapegroup) 46

8.1.10. Geometry instance (instance) . 47

8.1.11. Hair intersection shape (hair) . 48

8.2. Surface scattering models . 50

8.2.1. Smooth difuse material (diffuse) . 53

8.2.2. Rough difuse material (roughdiffuse) . 54

8.2.3. Smooth dielectric material (dielectric) . 55

8.2.4. hin dielectric material (thindielectric) 57

8.2.5. Rough dielectric material (roughdielectric) 58

8.2.6. Smooth conductor (conductor) . 61

8.2.7. Rough conductor material (roughconductor) 63

8.2.8. Smooth plastic material (plastic) . 66

8.2.9. Rough plastic material (roughplastic) . 69

8.2.10. Smooth dielectric coating (coating) . 72

8.2.11. Rough dielectric coating (roughcoating) . 74

8.2.12. Bump map modiier (bump) . 76

8.2.13. Modiied Phong BRDF (phong) . 77

8.2.14. Anisotropic Ward BRDF (ward) . 78

8.2.15. Mixture material (mixturebsdf) . 80

8.2.16. Blended material (blendbsdf) . 81

8.2.17. Opacity mask (mask) . 82

8.2.18. Two-sided BRDF adapter (twosided) . 83

8.2.19. Irawan & Marschner woven cloth BRDF (irawan) 84

8.2.20. Hanrahan-Krueger BSDF (hk) . 85

8.2.21. Difuse transmitter (difftrans) . 87

8.3. Textures . 88

8.3.1. Bitmap texture (bitmap) . 89

8.3.2. Checkerboard (checkerboard) . 92

8.3.3. Procedural grid texture (gridtexture) . 93

3

Contents Contents

8.3.4. Scaling passthrough texture (scale) . 94

8.3.5. Vertex color passthrough texture (vertexcolors) 95

8.3.6. Wireframe texture (wireframe) . 96

8.3.7. Curvature texture (curvature) . 97

8.4. Subsurface scattering models . 98

8.4.1. Dipole-based subsurface scattering model (dipole) 99

8.5. Participating media . 102

8.5.1. Homogeneous participating medium (homogeneous) 103

8.5.2. Heterogeneous participating medium (heterogeneous) 105

8.6. Phase functions . 107

8.6.1. Isotropic phase function (isotropic) . 108

8.6.2. Henyey-Greenstein phase function (hg) . 109

8.6.3. Rayleigh phase function (rayleigh) . 110

8.6.4. Kajiya-Kay phase function (kkay) . 111

8.6.5. Micro-lake phase function (microflake) . 112

8.6.6. Mixture phase function (mixturephase) . 113

8.7. Volume data sources . 114

8.7.1. Caching volume data source (volcache) . 115

8.7.2. Grid-based volume data source (gridvolume) 116

8.7.3. Constant-valued volume data source (constvolume) 118

8.8. Emitters . 119

8.8.1. Point light source (point) . 120

8.8.2. Area light (area) . 121

8.8.3. Spot light source (spot) . 122

8.8.4. Directional emitter (directional) . 123

8.8.5. Collimated beam emitter (collimated) . 124

8.8.6. Skylight emitter (sky) . 125

8.8.7. Sun emitter (sun) . 128

8.8.8. Sun and sky emitter (sunsky) . 129

8.8.9. Environment emitter (envmap) . 130

8.8.10. Constant environment emitter (constant) 131

8.9. Sensors . 132

8.9.1. Perspective pinhole camera (perspective) 133

8.9.2. Perspective camera with a thin lens (thinlens) 135

8.9.3. Orthographic camera (orthographic) . 137

8.9.4. Telecentric lens camera (telecentric) . 138

8.9.5. Spherical camera (spherical) . 139

8.9.6. Irradiance meter (irradiancemeter) . 140

8.9.7. Radiance meter (radiancemeter) . 141

8.9.8. Fluence meter (fluencemeter) . 142

8.10. Integrators . 143

8.10.1. Ambient occlusion integrator (ao) . 146

8.10.2. Direct illumination integrator (direct) . 147

8.10.3. Path tracer (path) . 148

8.10.4. Simple volumetric path tracer (volpath_simple) 150

8.10.5. Extended volumetric path tracer (volpath) 151

4

Contents Contents

8.10.6. Bidirectional path tracer (bdpt) . 152

8.10.7. Photon map integrator (photonmapper) . 156

8.10.8. Progressive photon mapping integrator (ppm) 158

8.10.9. Stochastic progressive photon mapping integrator (sppm) 159

8.10.10. Primary Sample Space Metropolis Light Transport (pssmlt) 160

8.10.11. Path Space Metropolis Light Transport (mlt) 162

8.10.12. Energy redistribution path tracing (erpt) . 164

8.10.13. Adjoint particle tracer (ptracer) . 166

8.10.14. Adaptive integrator (adaptive) . 167

8.10.15. Virtual Point Light integrator (vpl) . 168

8.10.16. Irradiance caching integrator (irrcache) . 169

8.11. Sample generators . 171

8.11.1. Independent sampler (independent) . 172

8.11.2. Stratiied sampler (stratified) . 173

8.11.3. Low discrepancy sampler (ldsampler) . 174

8.11.4. Halton QMC sampler (halton) . 175

8.11.5. Hammersley QMC sampler (hammersley) . 178

8.11.6. Sobol QMC sampler (sobol) . 180

8.12. Films . 182

8.12.1. High dynamic range ilm (hdrfilm) . 183

8.12.2. Tiled high dynamic range ilm (tiledhdrfilm) 186

8.12.3. Low dynamic range ilm (ldrfilm) . 187

8.12.4. MATLAB / Mathematica ilm (mfilm) . 189

8.13. Reconstruction ilters . 190

8.13.1. Reconstruction ilter comparison 1: frequency attenuation and aliasing . . . 191

8.13.2. Reconstruction ilter comparison 2: ringing 192

8.13.3. Specifying a reconstruction ilter . 192

II. Development guide 193

9. Code structure 193

10. Coding style 193

11. Designing a custom integrator plugin 196

11.1. Basic implementation . 196

11.2. Visualizing depth . 199

11.3. Nesting . 201

12. Parallelization layer 202

13. Python integration 209

13.0.1. Accessing signatures in an interactive Python shell 209

13.1. Basics . 210

13.2. Recipes . 211

13.2.1. Loading a scene . 211

5

Contents Contents

13.2.2. Rendering a loaded scene . 211

13.2.3. Rendering over the network . 212

13.2.4. Constructing custom scenes from Python . 212

13.2.5. Taking control of the logging system . 214

13.2.6. Rendering a turntable animation with motion blur 215

14. Acknowledgments 217

15. License 219

15.1. Preamble . 219

15.2. Terms and Conditions . 220

6

1. About Mitsuba

Part I.

UsingMitsuba

Disclaimer: his is manual documents the usage, ile format, and internal design of the Mitsuba

rendering system. It is currently a work in progress, hence some parts may still be incomplete or

missing.

1. About Mitsuba

Mitsuba is a research-oriented rendering system in the style of PBRT (www.pbrt.org), from which

it derives much inspiration. It is written in portable C++, implements unbiased as well as biased

techniques, and contains heavy optimizations targeted towards current CPU architectures. Mitsuba

is extremely modular: it consists of a small set of core libraries and over 100 diferent plugins that

implement functionality ranging from materials and light sources to complete rendering algorithms.

In comparison to other open source renderers, Mitsuba places a strong emphasis on experimental

rendering techniques, such as path-based formulations of Metropolis Light Transport and volumetric

modeling approaches. hus, it may be of genuine interest to those who would like to experiment with

such techniques that haven’t yet found their way into mainstream renderers, and it also provides a

solid foundation for research in this domain.

Other design considerations are:

Performance: Mitsuba provides optimized implementations of the most commonly used render-

ing algorithms. By virtue of running on a shared foundation, comparisons between them can better

highlight the merits and limitations of diferent approaches. his is in contrast to, say, comparing two

completely diferent rendering products, where technical information on the underlying implemen-

tation is oten intentionally not provided.

Robustness: In many cases, physically-based rendering packages force the user to model scenes

with the underlying algorithm (speciically: its convergence behavior) in mind. For instance, glass

windows are routinely replaced with light portals, photons must be manually guided to the relevant

parts of a scene, and interactions with complex materials are taboo, since they cannot be importance

sampled exactly. One focus of Mitsuba will be to develop path-space light transport algorithms, which

handle such cases more gracefully.

Scalability: Mitsuba instances can be merged into large clusters, which transparently distribute and

jointly execute tasks assigned to them using only node-to-node communcation. It has successfully

scaled to large-scale renderings that involved more than 1000 cores working on a single image. Most

algorithms in Mitsuba are written using a generic parallelization layer, which can tap into this cluster-

wide parallelism. he principle is that if any component of the renderer produces work that takes

longer than a second or so, it at least ought to use all of the processing power it can get.

he renderer also tries to be very conservative in its use of memory, which allows it to handle large

scenes (>30 million triangles) and multi-gigabyte heterogeneous volumes on consumer hardware.

Realism and accuracy: Mitsuba comes with a large repository of physically-based relectance mod-

els for surfaces and participating media. hese implementations are designed so that they can be

used to build complex shader networks, while providing enough lexibility to be compatible with

7

www.pbrt.org

3. License 2. Limitations

a wide range of diferent rendering techniques, including path tracing, photon mapping, hardware-

accelerated rendering and bidirectional methods.

he unbiased path tracers in Mitsuba are battle-proven and produce reference-quality results that

can be used for predictive rendering, and to verify implementations of other rendering methods.

Usability: Mitsuba comes with a graphical user interface to interactively explore scenes. Once

a suitable viewpoint has been found, it is straightforward to perform renderings using any of the

implemented rendering techniques, while tweaking their parameters to ind the most suitable settings.

Experimental integration into Blender 2.5 is also available.

2. Limitations

Mitsuba can be used to solve many interesting light transport problems. However, there are some

inherent limitations of the system that users should be aware of:

(i) Wave Optics: Mitsuba is fundamentally based on the geometric optics toolbox, which means

that it generally does not simulate phenomena that arise due to the wave properties of light

(difraction, for instance).

(ii) Polarization: Mitsuba does not account for polarization. In other words, light is always assumed

to be randomly polarized. his can be a problem for some predictive rendering applications.

(iii) Numerical accuracy: he accuracy of any result produced with this system is constrained by

the underlying loating point computations.

For instance, an intricate scene that can be rendered without problems, may produce the wrong

answer when all objects are translated away from the origin by a large distance, since loating

point numbers are spaced less densely at the new position. To avoid these sorts of pitfalls, it is

good to have a basic understanding of the IEEE-754 standard.

3. License

Mitsuba is free sotware and can be redistributed and modiied under the terms of the GNU General

Public License (Version 3) as provided by the Free Sotware Foundation.

Remarks:

• Being a “viral” license, the GPL automatically applies to all derivative work. Amongst other things,
this means that without express permission, Mitsuba’s source code is of-limits to companies that
develop rendering sotware not distributed under a compatible license.

8

4. Compiling the renderer 4. Compiling the renderer

4. Compiling the renderer

To compile Mitsuba, you will need a recent C++ compiler (e.g. GCC 4.2+ or Visual Studio 2010)

and some additional libraries, which Mitsuba uses internally. Builds on all supported platforms are

done using a uniied system based on SCons (http://www.scons.org), which is a Python-based

sotware construction tool. he exact process is diferent depending on which operating system is

used and will be explained in the following subsections.

4.1. Common steps

To get started, you will need to download a recent version of the Mitsuba source code. Before doing

this, ensure that you have read the licensing agreement (Section 15), and that you abide by its contents.

Note that, being a “viral” license, the GPL automatically applies to derivative work. Amongst other

things, this means that Mitsuba’s source code is of-limits to those who develop rendering sotware

not distributed under a compatible license.

Check that the Mercurial (http://mercurial.selenic.com/) versioning system1 is installed,

which is required to fetch the most recent source code release. Begin by entering the following at the

command prompt (or run an equivalent command from a graphical Mercurial frontend):

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

his should dowload a full copy of the main repository.

4.1.1. Build conigurations

Common to all platforms is that a build coniguration ile must be selected. Several options are avail-

able on each operating system:

Linux: On Linux, there are two supported conigurations:

build/config-linux-gcc.py: Optimized single precision GCC build. he resulting binaries in-

clude debug symbols for convenience, but these can only be used for relatively high-level de-

bugging due to the enabled optimizations.

build/config-linux-gcc-debug.py: Non-optimized single precision GCC build with debug

symbols. When compiled with this coniguration, Mitsuba will run extremely slowly. Its main

use is to track down elusive bugs.

Windows: On Windows, builds can either be performed using the Visual Studio 20102 compiler or

Intel XE Composer (on top of Visual Studio 2010). Note that Visual Studio 2010 Service Pack 1 must

be installed or the resulting binaries will crash.

build/config-{win32, win64}-{msvc2010, msvc2010-debug}.py: Create 32 or 64 bit bi-

naries using Microsot Visual C++ version 2010. he conigurations with the suix -debug

will include debug symbols in all binaries, which run very slowly.

1On Windows, you might want to use the convenient TortoiseHG shell extension (http://tortoisehg.bitbucket.

org/) to run the subsequent steps directly from the Explorer.
2No other Visual Studio versions are currently supported.

9

http://www.scons.org
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/
http://tortoisehg.bitbucket.org/

4. Compiling the renderer 4.2. Compilation flags

build/config-{win32, win64}-icl.py: Create 32 or 64 bit release binaries using Intel XE Com-

poser (on top of Visual Studio 2010). Versions XE 2012 and 2013 are known to work.

Mac OS: On Mac OS, builds can either be performed using the the XCode 4 llvm-gcc toolchain

or Intel XE Composer. It is possible to target MacOS 10.6 (Snow Leopard) or 10.7 (Lion) as the oldest

supported operating system release. In both cases, XCode must be installed along with the supple-

mentary command line tools.

config-macos{10.6, 10.7}-gcc-{x86,x86_64,universal}.py: Create Intel 32 bit, 64 bit,

or universal binaries using the llvm-gcc toolchain.

config-macos{10.6, 10.7}-icl-{x86,x86_64}.py: Create Intel 32 bit or 64 bit binaries us-

ing the Intel XE Composer toolchain. Versions XE 2012 and 2013 are known to work.

Note that the coniguration iles assume that XCode was installed in the /Applications folder. hey

must be be manually updated when this is not the case.

4.1.2. Selecting a coniguration

Having chosen a coniguration, copy it to the main directory and rename it to config.py, e.g.:

$ cp build/config-linux-gcc.py config.py

4.2. Compilation lags

here are several lags that afect the behavior of Mitsuba and must be speciied at compile time. hese

usually don’t need to be changed, but if you want to compile Mitsuba for spectral rendering, or to use

double precision for internal computations then the following may be useful. Otherwise, you may

skip ahead to the subsection that covers your operating system.

To change the compilation lags, open the config.py ile that was just copied and look up the

CXXFLAG parameter. he following options are available:

MTS_DEBUG Enable assertions etc. Usually a good idea, and enabled by default (even in release

builds).

MTS_KD_DEBUG Enable additional checks in the kd-tree. his is quite slow and mainly useful to track

down bugs when they are suspected.

MTS_KD_CONSERVE_MEMORY Use a more compact representation for triangle geometry (at the cost

of speed). his lag causes Mitsuba to use the somewhat slower Moeller-Trumbore triangle

intersection method instead of the default Wald intersection test, which has an overhead of 48

bytes per triangle. Of by default.

MTS_SSE Activate optimized SSE routines. On by default.

MTS_HAS_COHERENT_RT Include coherent ray tracing support (depends on MTS_SSE). his lag is

activated by default.

10

4. Compiling the renderer 4.3. Building on Debian or Ubuntu Linux

MTS_DEBUG_FP Generated NaNs and overlows will cause loating point exceptions, which can be

caught in a debugger. his is slow and mainly meant as a debugging tool for developers. Of by

default.

SPECTRUM_SAMPLES=⟨..⟩ his setting deines the number of spectral samples (in the 368-830 nm

range) that are used to render scenes. he default is 3 samples, in which case the renderer

automatically turns into an RGB-based system. For high-quality spectral rendering, this should

be set to 30 or higher. Refer also to Section 7.1.

SINGLE_PRECISION Do all computation in single precision. his is normally suicient and there-

fore used as the default setting.

DOUBLE_PRECISION Do all computation in double precision. his lag is incompatible withMTS_SSE,

MTS_HAS_COHERENT_RT, and MTS_DEBUG_FP.

MTS_GUI_SOFTWARE_FALLBACK Causes the GUI to use a sotware fallback instead of the hardware-

accelerated realtime preview. his is useful when the binary will be executed over a remote link

using a protocol such as RDP (which does not provide the requisite OpenGL features).

All of the default conigurations iles located in the build directory use the lags SINGLE_PRECISION,

SPECTRUM_SAMPLES=3, MTS_DEBUG, MTS_SSE, as well as MTS_HAS_COHERENT_RT.

4.3. Building on Debian or Ubuntu Linux

You’ll irst need to install a number of dependencies. It is assumed here that you are using a recent

version of Ubuntu Linux (Precise Pangolin / 12.04 LTS or later), hence some of the package may be

named diferently if you are using Debian Linux or another Ubuntu version.

First, run

$ sudo apt-get install build-essential scons mercurial qt4-dev-tools libpng12-dev

libjpeg62-dev libilmbase-dev libxerces-c-dev libboost-all-dev

libopenexr-dev libglewmx1.5-dev libxxf86vm-dev libpcrecpp0 libeigen3-dev

To get COLLADA support, you will also need to install the collada-dom packages or build them

from scratch. Here, we install the x86_64 binaries and development headers that can be found on

the Mitsuba website (at http://www.mitsuba-renderer.org/releases/current)

$ sudo dpkg --install collada-dom_*.deb

To start a regular build, run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to paral-

lelize the build by appending -j core count to the scons command. If all goes well, SCons should

inish successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you irst have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

11

http://www.mitsuba-renderer.org/releases/current

4. Compiling the renderer 4.3. Building on Debian or Ubuntu Linux

4.3.1. Creating Debian or Ubuntu Linux packages

he preferred way of redistristributing executables on Debian or Ubuntu Linux is to create .deb pack-

age iles. To make custom Mitsuba packages, it is strongly recommended that you work with a pristine

installation of the target operating system3. his can be done as follows: irst, install debootstrap

and download the most recent operating system release to a subdirectory. he following example is

based on Ubuntu 12.04 LTS (“Precise Pangolin”), but the steps are almost identical for other versions

of Ubuntu or Debian Linux.

$ sudo apt-get install debootstrap

$ sudo debootstrap --arch amd64 precise precise-pristine

Next, chroot into the created directory, enable the multiverse package repository, and install the

necessary tools for creating package iles:

$ sudo chroot precise-pristine

$ echo "deb http://archive.ubuntu.com/ubuntu precise universe" >> /etc/apt/sources.

list

$ apt-get update

$ apt-get install debhelper dpkg-dev pkg-config

Now, you should be able to set up the remaining dependencies as described in Section 4.3. Once this

is done, check out a copy of Mitsuba to the root directory of the chroot environment, e.g.

$ hg clone https://www.mitsuba-renderer.org/hg/mitsuba

To start the compilation process, enter

$ cd mitsuba

$ cp -R data/linux/debian debian

$ dpkg-buildpackage -nc

Ater everything has been built, you should ind the created package iles in the root directory.

4.3.2. Releasing Ubuntu packages

To redistribute Ubuntu packages over the Internet or a local network, it is convenient to put them

into an apt-compatible repository. To prepare such a repository, put the two deb-iles built in the

last section, as well as the collada-dom deb-iles into a public directory made available by a HTTP

server and inside it, run

path-to-htdocs$ dpkg-scanpackages path/to/deb-directory /dev/null | gzip -9c >

path/to/deb-directory/Packages.gz

his will create a respository index ile named Packages.gz. Note that you must execute this com-

mand in the root directory of the HTTP server’s web directory and provide the relative path to the

package iles – otherwise, the index ile will specify the wrong package paths. Finally, the whole di-

rectory can be uploaded to some public location and then referenced by placing a line following the

pattern

deb http://<path-to-deb-directory> ./

3Several commercial graphics drivers “pollute” the OpenGL setup so that the compiled Mitsuba binaries can only be

used on machines using the same drivers. For this reason, it is better to work from a clean boostrapped install.

12

4. Compiling the renderer 4.4. Building on Fedora Core

into the /etc/apt/sources.list ile. his setup is convenient for distributing a custom Mitsuba

build to many Debian or Ubuntu machines running (e.g. to nodes in a rendering cluster).

4.4. Building on Fedora Core

You’ll irst need to install a number of dependencies. It is assumed here that you are using FC15, hence

some of the package may be named diferently if you are using another version.

First, run

$ sudo yum install mercurial gcc-c++ scons boost-devel qt4-devel OpenEXR-devel

xerces-c-devel python-devel glew-devel libpng-devel libjpeg-devel collada-dom-

devel eigen3-devel

Aterwards, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-

allelize the build by appending -j core count to the command. If all goes well, SCons should inish

successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you irst have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

4.4.1. Creating Fedora Core packages

To create RPM packages, you will need to install the RPM development tools:

$ sudo yum install rpmdevtools

Once this is done, run the following command in your home directory:

$ rpmdev-setuptree

and create a Mitsuba source package in the appropriate directory:

$ ln -s mitsuba mitsuba-0.4.4

$ tar czvf rpmbuild/SOURCES/mitsuba-0.4.4.tar.gz mitsuba-0.4.4/.

Finally, rpmbuilder can be invoked to create the package:

$ rpmbuild -bb mitsuba-0.4.4/data/linux/fedora/mitsuba.spec

Ater this command inishes, its output can be found in the directory rpmbuild/RPMS.

4.5. Building on Arch Linux

You’ll irst need to install a number of dependencies:

$ sudo pacman -S gcc xerces-c glew openexr boost libpng libjpeg qt scons mercurial

python

13

4. Compiling the renderer 4.6. Building on Windows

For COLLADA support, you will also have to install the collada-dom library. For this, you can either

install the binary package available on the Mitsuba website, or you can compile it yourself using the

PKGBUILD supplied with Mitsuba, i.e.

$ cd <some-temporary-directory>

$ cp <path-to-mitsuba>/data/linux/arch/collada-dom/PKGBUILD .

$ makepkg PKGBUILD

<..compiling..>

$ sudo pacman -U <generated package file>

Finally, Eigen 3 must be installed. Again, there is a binary package on the Mitsuba website and the

corresponding PKGBUILD can be obtained here: http://aur.archlinux.org/packages.php?

ID=47884. Once all dependencies are taken care of, simply run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-

allelize the build by appending -j core count to the command. If all goes well, SCons should inish

successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you irst have to import it into your shell environment:

$ source setpath.sh

Having set up everything, you can now move on to Section 5.

4.5.1. Creating Arch Linux packages

Mitsuba ships with a PKGBUILD ile, which automatically builds a package from the most recent repos-

itory version:

$ makepkg data/linux/arch/mitsuba/PKGBUILD

4.6. Building on Windows

Compiling Mitsuba’s dependencies on Windows is a laborious process; for convenience, there is a

repository that provides them in precompiled form. To use this repository, clone it using Mercurial

and rename the directory so that it forms the dependencies subdirectory inside the main Mitsuba

directory, i.e. run something like

C:\>cd mitsuba

C:\mitsuba\>hg clone https://www.mitsuba-renderer.org/hg/dependencies_windows

C:\mitsuba\>rename dependencies_windows dependencies

here are a few other things that need to be set up: make sure that your installation of Visual Studio

is up to date, since Mitsuba binaries created with versions prior to Service Pack 1 will crash.

Next, you will need to install Python 2.6.x (www.python.org) and SCons4 (http://www.scons.

org, any 2.x version will do) and ensure that they are contained in the %PATH% environment variable

so that entering scons on the command prompt (cmd.exe) launches the build system.

4Note that on someWindowsmachines, the SCons installer generates a warning about not inding Python in the registry.

In this case, you can instead run python setup.py install within the source release of SCons.

14

http://aur.archlinux.org/packages.php?ID=47884
http://aur.archlinux.org/packages.php?ID=47884
www.python.org
http://www.scons.org
http://www.scons.org

4. Compiling the renderer 4.7. Building on Mac OS X

Having installed all dependencies, run the “Visual Studio 2010 Command Prompt” from the Start

Menu (x86 for 32-bit or x64 for 64bit), navigate to the Mitsuba directory, and simply run

C:\mitsuba\>scons

In the case that you have multiple processors, you might want to parallelize the build by appending

the option -j core count to the scons command.

If all goes well, the build process will inish successfully ater a few minutes. Note that in comparison

to the other platforms, you don’t have to run the setpath.sh script at this point. All binaries are

automatically copied into the dist directory, and they should be executed directly from there.

4.6.1. Integration with the Visual Studio interface

Basic Visual Studio 2010 integration with support for code completion exists for those who develop

Mitsuba code on Windows. To use the supplied projects, simply double-click on one of the two

iles build/mitsuba-msvc2010.sln and build/mitsuba-msvc2010.sln. hese Visual Studio

projects still internally use the SCons-based build system to compile Mitsuba; whatever build conig-

uration is selected within Visual Studio will be used to pick a matching coniguration ile from the

build directory.

4.7. Building on Mac OS X

Remarks:

• Due to an unfortunate bug in the Mac OS core libraries, OpenMP is not available when compiling
using the regular llvm-gcc toolchain (it is available when using Intel XE Composer). his will
cause the following parts of Mitsuba to run single-threaded: bitmap resampling (i.e. MIP map
generation), blue noise point generation in the dipole plugin, as well as the ppm and sppm plugins.

Compiling Mitsuba’s dependencies on Mac OS is a laborious process; for convenience, there is a

repository that provides them in precompiled form. To use this repository, clone it using Mercurial

and rename the directory so that it forms the dependencies subdirectory inside the main Mitsuba

directory, i.e. run something like

$ cd mitsuba

$ hg clone https://www.mitsuba-renderer.org/hg/dependencies_macos

$ mv dependencies_macos dependencies

You will also need to install SCons (>2.0.0, available at www.scons.org) and a recent release of

XCode, including its command-line compilation tools. Next, run

$ scons

inside the Mitsuba directory. In the case that you have multiple processors, you might want to par-

allelize the build by appending -j core count to the command. If all goes well, SCons should inish

successfully within a few minutes:

scons: done building targets.

To run the renderer from the command line, you irst have to import it into your shell environment:

$ source setpath.sh

15

5. Basic usage 5. Basic usage

5. Basic usage

he rendering functionality of Mitsuba can be accessed through a command line interface and an

interactive Qt-based frontend. his section provides some basic instructions on how to use them.

5.1. Interactive frontend

To launch the interactive frontend, run Mitsuba.app on MacOS, mtsgui.exe on Windows, and

mtsgui on Linux (ater sourcing setpath.sh). You can also drag and drop scene iles onto the

application icon or the running program to open them. A quick video tutorial on using the GUI can

be found here: http://vimeo.com/13480342.

5.2. Command line interface

he mitsuba binary is an alternative non-interactive rendering frontend for command-line usage

and batch job operation. To get a listing of the parameters it supports, run the executable without

parameters:

$ mitsuba

Listing 1 shows the output resulting from this command. he most common mode of operation is to

render a single scene, which is provided as a parameter, e.g.

$ mitsuba path-to/my-scene.xml

It is also possible to connect to network render nodes, which essentially lets Mitsuba parallelize over

additional cores. To do this, pass a semicolon-separated list of machines to the -c parameter.

$ mitsuba -c machine1;machine2;... path-to/my-scene.xml

here are two diferent ways in which you can access render nodes:

• Direct: Here, you create a direct connection to a running mtssrv instance on another machine

(mtssrv is the Mitsuba server process). From the the performance standpoint, this approach

should always be preferred over the SSH method described below when there is a choice be-

tween them. here are some disadvantages though: irst, you need to manually start mtssrv

on every machine you want to use.

And perhaps more importantly: the direct communication protocol makes no provisions for

a malicious user on the remote side. It is too costly to constantly check the communication

stream for illegal data sequences, so Mitsuba simply doesn’t do it. he consequence of this is

that you should only use the direct communication approach within trusted networks.

For direct connections, you can specify the remote port as follows:

$ mitsuba -c machine:1234 path-to/my-scene.xml

When no port is explicitly speciied, Mitsuba uses default value of 7554.

• SSH: his approach works as follows: he renderer creates a SSH connection to the remote

side, where it launches a Mitsuba worker instance. All subsequent communication then passes

16

http://vimeo.com/13480342

5. Basic usage 5.2. Command line interface

Mitsuba version 0.4.4, Copyright (c) 2013 Wenzel Jakob

Usage: mitsuba [options] <One or more scene XML files>

Options/Arguments:

-h Display this help text

-D key=val Define a constant, which can referenced as "$key" in the scene

-o fname Write the output image to the file denoted by "fname"

-a p1;p2;.. Add one or more entries to the resource search path

-p count Override the detected number of processors. Useful for reducing

the load or creating scheduling-only nodes in conjunction with

the -c and -s parameters, e.g. -p 0 -c host1;host2;host3,...

-q Quiet mode - do not print any log messages to stdout

-c hosts Network rendering: connect to mtssrv instances over a network.

Requires a semicolon-separated list of host names of the form

host.domain[:port] for a direct connection

or

user@host.domain[:path] for a SSH connection (where

"path" denotes the place where Mitsuba is checked

out -- by default, "~/mitsuba" is used)

-s file Connect to additional Mitsuba servers specified in a file

with one name per line (same format as in -c)

-j count Simultaneously schedule several scenes. Can sometimes accelerate

rendering when large amounts of processing power are available

(e.g. when running Mitsuba on a cluster. Default: 1)

-n name Assign a node name to this instance (Default: host name)

-t Test case mode (see Mitsuba docs for more information)

-x Skip rendering of files where output already exists

-r sec Write (partial) output images every 'sec' seconds

-b res Specify the block resolution used to split images into parallel

workloads (default: 32). Only applies to some integrators.

-v Be more verbose

-w Treat warnings as errors

-z Disable progress bars

For documentation, please refer to http://www.mitsuba-renderer.org/docs.html

Listing 1: Command line options of the mitsuba binary

17

5. Basic usage 5.2. Command line interface

through the encrypted link. his is completely secure but slower due to the encryption over-

head. If you are rendering a complex scene, there is a good chance that it won’t matter much

since most time is spent doing computations rather than communicating

Such an SSH link can be created simply by using a slightly diferent syntax:

$ mitsuba -c username@machine path-to/my-scene.xml

he above line assumes that the remote home directory contains a Mitsuba source directory

named mitsuba, which contains the compiled Mitsuba binaries. If that is not the case, you

need to provide the path to such a directory manually, e.g:

$ mitsuba -c username@machine:/opt/mitsuba path-to/my-scene.xml

For the SSH connection approach to work, you must enable passwordless authentication. Try

opening a terminal window and running the command ssh username@machine (replace

with the details of your remote connection). If you are asked for a password, something is not

set up correctly — please see http://www.debian-administration.org/articles/152

for instructions.

On Windows, the situation is a bit more diicult since there is no suitable SSH client by default.

To get SSH connections to work, Mitsuba requires plink.exe (from PuTTY) to be on the

path. For passwordless authentication with a Linux/OSX-based server, convert your private

key to PuTTY’s format using puttygen.exe. Aterwards, start pageant.exe to load and

authenticate the key. All of these binaries are available from the PuTTY website.

It is possible to mix the two approaches to access some machines directly and others over SSH.

When doing many network-based renders over the command line, it can become tedious to specify

the connections every time. hey can alternatively be loaded from a text ile where each line contains

a separate connection description as discussed previously:

$ mitsuba -s servers.txt path-to/my-scene.xml

where servers.txt e.g. contains

user1@machine1.domain.org:/opt/mitsuba

machine2.domain.org

machine3.domain.org:7346

5.2.1. Passing parameters

Any attribute in the XML-based scene description language can be parameterized from the command

line. For instance, you can render a scene several times with diferent relectance values on a certain

material by changing its description to something like

<bsdf type="diffuse">

<spectrum name="reflectance" value="$reflectance"/>

</bsdf>

and running Mitsuba as follows:

$ mitsuba -Dreflectance=0.1 -o ref_0.1.exr scene.xml

$ mitsuba -Dreflectance=0.2 -o ref_0.2.exr scene.xml

$ mitsuba -Dreflectance=0.5 -o ref_0.5.exr scene.xml

18

http://www.debian-administration.org/articles/152

5. Basic usage 5.3. Direct connection server

5.2.2. Writing partial images to disk

When doing lengthy command line renders on Linux or OSX, it is possible to send a signal to the

process using

$ killall -HUP mitsuba

his causes the renderer to write out the partially inished image, ater which it continues rendering.

his can sometimes be useful to check if everything is working correctly.

5.2.3. Rendering an animation

he command line interface is ideally suited for rendering large amounts of iles in batch operation.

You can simply pass in the iles using a wildcard in the ilename.

If you’ve already rendered a subset of the frames and you only want to complete the remainder,

add the -x lag, and all iles with existing output will be skipped. You can also let the scheduler work

on several scenes at once using the -j parameter — this is especially useful when parallelizing over

multiple machines: as some of the participating machines inish rendering the current frame, they

can immediately start working on the next one instead of having to wait for all other cores to inish.

Altogether, you might start the with parameters such as the following

$ mitsuba -xj 2 -c machine1;machine2;... animation/frame_*.xml

5.3. Direct connection server

A Mitsuba compute node can be created using the mtssrv executable. By default, it will listen on

port 7554:

$ mtssrv

..

maxwell: Listening on port 7554.. Send Ctrl-C or SIGTERM to stop.

Type mtssrv -h to see a list of available options. If you ind yourself unable to connect to the server,

mtssrv is probably listening on the wrong interface. In this case, please specify an explicit IP address

or hostname:

$ mtssrv -i maxwell.cs.cornell.edu

As advised in Section 5.2, it is advised to run mtssrv only in trusted networks.

One nice feature of mtssrv is that it (like the mitsuba executable) also supports the -c and -s

parameters, which create connections to additional compute servers. Using this feature, one can

create hierarchies of compute nodes. For instance, the root mttsrv instance of such a hierarchy

could share its work with a number of other machines running mtssrv, and each of these might also

share their work with further machines, and so on...

he parallelization over such hierarchies happens transparently—when connecting a renderering

process to the root node, it sees a machine with hundreds or thousands of cores, to which it can

submit work without needing to worry about how exactly it is going to be spread out in the hierarchy.

Such hierarchies are mainly useful to reduce communication bottlenecks when distributing large

resources (such as scenes) to remote machines. Imagine the following hypothetical scenario: you

would like to render a 50MB-sized scene while at home, but rendering is too slow. You decide to

tap into some extra machines available at your workplace, but this usually doesn’t make things much

19

5. Basic usage 5.4. Utility launcher

faster because of the relatively slow broadband connection and the need to transmit your scene to

every single compute node involved.

Using mtssrv, you can instead designate a central scheduling node at your workplace, which ac-

cepts connections and delegates rendering tasks to the other machines. In this case, you will only

have to transmit the scene once, and the remaining distribution happens over the fast local network

at your workplace.

5.4. Utility launcher

When working on a larger project, one oten needs to implement various utility programs that per-

form simple tasks, such as applying a ilter to an image or processing a matrix stored in a ile. In a

framework like Mitsuba, this unfortunately involves a signiicant coding overhead in initializing the

necessary APIs on all supported platforms. To reduce this tedious work on the side of the program-

mer, Mitsuba comes with a utility launcher called mtsutil.

he general usage of this command is

$ mtsutil [options] <utility name> [arguments]

For a listing of all supported options and utilities, enter the command without parameters.

5.4.1. Tonemapper

One particularly useful utility that shall be mentioned here is the batch tonemapper, which loads

EXR/RGBE images and writes tonemapped 8-bit PNG/JPGs. his can save much time when one has

to process many high dynamic-range images such as animation frames using the same basic opera-

tions, e.g. gamma correction, changing the overall brightness, resizing, cropping, etc. he available

command line options are shown in Listing 2.

20

5. Basic usage 5.4. Utility launcher

$ mtsutil tonemap

Synopsis: Loads one or more EXR/RGBE images and writes tonemapped 8-bit PNG/JPGs

Usage: mtsutil tonemap [options] <EXR/RGBE file (s)>

Options/Arguments:

-h Display this help text

-g gamma Specify the gamma value (The default is -1 => sRGB)

-m multiplier Multiply the pixel values by 'multiplier' (Default = 1)

-b r,g,b Color balance: apply the specified per-channel multipliers

-c x,y,w,h Crop: tonemap a given rectangle instead of the entire image

-s w,h Resize the output image to the specified resolution

-r x,y,w,h,i Add a rectangle at the specified position and intensity, e.g.

to make paper figures. The intensity should be in [0, 255].

-f fmt Request a certain output format (png/jpg, default:png)

-a Require the output image to have an alpha channel

-p key,burn Run Reinhard et al.'s photographic tonemapping operator. 'key'

between [0, 1] chooses between low and high-key images and

'burn' (also [0, 1]) controls how much highlights may burn out

-x Temporal coherence mode: activate this flag when tonemapping

frames of an animation using the '-p' option to avoid flicker

-o file Save the output with a given filename

-t Multithreaded: process several files in parallel

The operations are ordered as follows: 1. crop, 2. resize, 3. color-balance,

4. tonemap, 5. annotate. To simply process a directory full of EXRs in

parallel, run the following: 'mtsutil tonemap -t path-to-directory/*.exr'

Listing 2: Command line options of the mtsutil tonemap utility

21

6. Scene file format 6. Scene file format

6. Scene ile format

Mitsuba uses a very simple and general XML-based format to represent scenes. Since the framework’s

philosophy is to represent discrete blocks of functionality as plugins, a scene ile can essentially be

interpreted as description that determines which plugins should be instantiated and how they should

interface with each other. In the following, we’ll look at a few examples to get a feeling for the scope

of the format.

A simple scene with a single mesh and the default lighting and camera setup might look something

like this:

<?xml version="1.0" encoding="utf-8"?>

<scene version="0.4.4">

<shape type="obj">

<string name="filename" value="dragon.obj"/>

</shape>

</scene>

he scene version attribute denotes the release of Mitsuba that was used to create the scene. his

information allows Mitsuba to always correctly process the ile irregardless of any potential future

changes in the scene description language.

his example already contains the most important things to know about format: you can have ob-

jects (such as the objects instantiated by the scene or shape tags), which are allowed to be nested

within each other. Each object optionally accepts properties (such as the string tag), which fur-

ther characterize its behavior. All objects except for the root object (the scene) cause the renderer

to search and load a plugin from disk, hence you must provide the plugin name using type=".."

parameter.

he object tags also let the renderer know what kind of object is to be instantiated: for instance, any

plugin loaded using the shape tag must conform to the Shape interface, which is certainly the case

for the plugin named obj (it contains a WaveFront OBJ loader). Similarly, you could write

<?xml version="1.0" encoding="utf-8"?>

<scene version="0.4.4">

<shape type="sphere">

<float name="radius" value="10"/>

</shape>

</scene>

his loads a diferent plugin (sphere) which is still a Shape, but instead represents a sphere conigured

with a radius of 10 world-space units. Mitsuba ships with a large number of plugins; please refer to

the next chapter for a detailed overview of them.

he most common scene setup is to declare an integrator, some geometry, a sensor (e.g. a camera),

a ilm, a sampler and one or more emitters. Here is a more complex example:

<?xml version="1.0" encoding="utf-8"?>

<scene version="0.4.4">

<integrator type="path">

<!-- Path trace with a max. path length of 8 -->

<integer name="maxDepth" value="8"/>

</integrator>

22

6. Scene file format 6. Scene file format

<!-- Instantiate a perspective camera with 45 degrees field of view -->

<sensor type="perspective">

<!-- Rotate the camera around the Y axis by 180 degrees -->

<transform name="toWorld">

<rotate y="1" angle="180"/>

</transform>

<float name="fov" value="45"/>

<!-- Render with 32 samples per pixel using a basic

independent sampling strategy -->

<sampler type="independent">

<integer name="sampleCount" value="32"/>

</sampler>

<!-- Generate an EXR image at HD resolution -->

<film type="hdrfilm">

<integer name="width" value="1920"/>

<integer name="height" value="1080"/>

</film>

</sensor>

<!-- Add a dragon mesh made of rough glass (stored as OBJ file) -->

<shape type="obj">

<string name="filename" value="dragon.obj"/>

<bsdf type="roughdielectric">

<!-- Tweak the roughness parameter of the material -->

<float name="alpha" value="0.01"/>

</bsdf>

</shape>

<!-- Add another mesh -- this time, stored using Mitsuba's own

(compact) binary representation -->

<shape type="serialized">

<string name="filename" value="lightsource.serialized"/>

<transform name="toWorld">

<translate x="5" x="-3" z="1"/>

</transform>

<!-- This mesh is an area emitter -->

<emitter type="area">

<rgb name="radiance" value="100,400,100"/>

</emitter>

</shape>

</scene>

his example introduces several new object types (integrator, sensor, bsdf, sampler, film,

and emitter) and property types (integer, transform, and rgb). As you can see in the example,

objects are usually declared at the top level except if there is some inherent relation that links them to

another object. For instance, BSDFs are usually speciic to a certain geometric object, so they appear

as a child object of a shape. Similarly, the sampler and ilm afect the way in which rays are generated

23

6. Scene file format 6.1. Property types

from the sensor and how it records the resulting radiance samples, hence they are nested inside it.

6.1. Property types

his section documents all of the ways in which properties can be supplied to objects. If you are more

interested in knowing which properties a certain plugin accepts, you should look at the next section

instead.

6.1.1. Numbers

Integer and loating point values can be passed as follows:

<integer name="intProperty" value="1234"/>

<float name="floatProperty" value="1.234"/>

<float name="floatProperty2" value="-1.5e3"/>

Note that you must adhere to the format expected by the object, i.e. you can’t pass an integer property

to an object, which expects a loating-point value associated with that name.

6.1.2. Strings

Passing strings is straightforward:

<string name="stringProperty" value="This is a string"/>

6.1.3. Color spectra

Depending on the compilation lags of Mitsuba (see Section 4.2 for details), the renderer internally

either represents colors using discretized color spectra (when SPECTRUM_SAMPLES is set to a value

other than 3), or it uses a basic linear RGB representation5. Irrespective of which internal representa-

tion is used, Mitsuba supports several diferent ways of specifying color information, which is then

converted appropriately.

he preferred way of passing color spectra to the renderer is to explicitly denote the associated

wavelengths of each value:

<spectrum name="spectrumProperty" value="400:0.56, 500:0.18, 600:0.58, 700:0.24"/>

his is a mapping from wavelength in nanometers (before the colon) to a relectance or intensity value

(ater the colon). Values in between are linearly interpolated from the two closest neighbors. A useful

shortcut to get a completely uniform spectrum, it is to provide only a single value:

<spectrum name="spectrumProperty" value="0.56"/>

Another (discouraged) option is to directly provide the spectrum in Mitsuba’s internal represen-

tation, avoiding the need for any kind of conversion. However, this is problematic, since the as-

sociated scene will likely not work anymore when Mitsuba is compiled with a diferent value of

SPECTRUM_SAMPLES. For completeness, the possibility is explained nonetheless. Assuming that the

360-830nm range is discretized into ten 47nm-sized blocks (i.e. SPECTRUM_SAMPLES is set to 10),

their values can be speciied as follows:

5he oicial releases all use linear RGB—to do spectral renderings, you will have to compile Mitsuba yourself.

24

6. Scene file format 6.1. Property types

<spectrum name="spectrumProperty" value=".2, .2, .8, .4, .6, .5, .1, .9, .4, .2"/>

Another convenient way of providing color spectra is by specifying linear RGB or sRGB values

using loating-point triplets or hex values:

<rgb name="spectrumProperty" value="0.2, 0.8, 0.4"/>

<srgb name="spectrumProperty" value="0.4, 0.3, 0.2"/>

<srgb name="spectrumProperty" value="#f9aa34"/>

When Mitsuba is compiled with the default settings, it internally uses linear RGB to represent col-

ors, so these values can directly be used. However, when conigured for doing spectral rendering, a

suitable color spectrum with the requested RGB relectance must be found. his is a tricky problem,

since there is an ininite number of spectra with this property.

Mitsuba uses a method by Smits et al. [42] to ind a “plausible” spectrum that is as smooth as

possible. To do so, it uses one of two methods depending on whether the spectrum contains a unitless

relectance value, or a radiance-valued intensity.

<rgb name="spectrumProperty" intent="reflectance" value="0.2, 0.8, 0.4"/>

<rgb name="spectrumProperty" intent="illuminant" value="0.2, 0.8, 0.4"/>

he reflectance intent is used by default, so remember to set it to illuminant when deining the

brightness of a light source with the <rgb> tag.

When spectral power or relectance distributions are obtained from measurements (e.g. at 10nm

intervals), they are usually quite unwiedy and can clutter the scene description. For this reason, there

is yet another way to pass a spectrum by loading it from an external ile:

<spectrum name="spectrumProperty" filename="measuredSpectrum.spd"/>

he ile should contain a single measurement per line, with the corresponding wavelength in nanome-

ters and the measured value separated by a space. Comments are allowed. Here is an example:

This file contains a measured spectral power/reflectance distribution

406.13 0.703313

413.88 0.744563

422.03 0.791625

430.62 0.822125

435.09 0.834000

...

Finally, it is also possible to specify the spectral distribution of a black body emitter (Figure 1),

where the temperature is given in Kelvin.

<blackbody name="spectrumProperty" temperature="5000K"/>

Note that attaching a black body spectrum to the intensity property of a emitter introduces physi-

cal units into the rendering process of Mitsuba, which is ordinarily a unitless system6.

Speciically, the black body spectrum has units of power (W) per unit area (m−2) per steradian

(sr−1) per unit wavelength (nm−1). If these units are inconsistent with your scene description, you

may use the optional scale attribute to adjust them, e.g.:

6hismeans that the units of pixel values in a rendering are completely dependent on the units of the user input, including

the unit of world-space distance and the units of the light source emission proile.

25

6. Scene file format 6.1. Property types

Figure 1: A few simulated black body emitters over a range of temperature values

<!-- Scale black body radiance by a factor of 1/1000 -->

<blackbody name="spectrumProperty" temperature="5000K" scale="1e-3"/>

6.1.4. Vectors, Positions

Points and vectors can be speciied as follows:

<point name="pointProperty" x="3" y="4" z="5"/>

<vector name="vectorProperty" x="3" y="4" z="5"/>

It is important that whatever you choose as world-space units (meters, inches, etc.) is used consis-

tently in all places.

6.1.5. Transformations

Transformations are the only kind of property that require more than a single tag. he idea is that,

starting with the identity, one can build up a transformation using a sequence of commands. For

instance, a transformation that does a translation followed by a rotation might be written like this:

<transform name="trafoProperty">

<translate x="-1" y="3" z="4"/>

<rotate y="1" angle="45"/>

</transform>

Mathematically, each incremental transformation in the sequence is let-multiplied onto the current

one. he following choices are available:

• Translations, e.g.

<translate x="-1" y="3" z="4"/>

• Counter-clockwise rotations around a speciied axis. he angle is given in degrees, e.g.

26

6. Scene file format 6.2. Animated transformations

<rotate x="0.701" y="0.701" z="0" angle="180"/>

• Scaling operations. he coeicients may also be negative to obtain a lip, e.g.

<scale value="5"/> <!-- uniform scale -->

<scale x="2" y="1" z="-1"/> <!-- non-unform scale -->

• Explicit 4×4 matrices, e.g

<matrix value="0 -0.53 0 -1.79 0.92 0 0 8.03 0 0 0.53 0 0 0 0 1"/>

• lookat transformations — this is primarily useful for setting up cameras (and spot lights). he

origin coordinates specify the camera origin, target is the point that the camera will look

at, and the (optional) up parameter determines the “upward” direction in the inal rendered

image. he up parameter is not needed for spot lights.

<lookat origin="10, 50, -800" target="0, 0, 0" up="0, 1, 0"/>

Cordinates that are zero (for translate and rotate) or one (for scale) do not explicitly have to

be speciied.

6.2. Animated transformations

Most shapes, emitters, and sensors in Mitsuba can accept both normal transformations and animated

transformations as parameters. he latter is useful to render scenes involving motion blur (Figure 2).

he syntax used to specify these is slightly diferent:

<animation name="trafoProperty">

<transform time="0">

.. chained list of transformations as discussed above ..

</transform>

<transform time="1">

.. chained list of transformations as discussed above ..

</transform>

.. additional transformations (optional) ..

</animation>

Mitsuba then decomposes each transformation into a scale, translation, and rotation component

and interpolates7 these for intermediate time values. It is important to specify appropriate shutter

open/close times to the sensor so that the motion is visible.

7Using linear interpolation for the scale and translation component and spherical linear quaternion interpolation for the

rotation component.

27

6. Scene file format 6.3. References

Figure 2: Beware the dragon: a triangle mesh undergoing linear motion with several keyframes (object cour-
tesy of XYZRGB)

6.3. References

Quite oten, you will ind yourself using an object (such as a material) in many places. To avoid having

to declare it over and over again, which wastes memory, you can make use of references. Here is an

example of how this works:

<scene version="0.4.4">

<texture type="bitmap" id="myImage">

<string name="filename" value="textures/myImage.jpg"/>

</texture>

<bsdf type="diffuse" id="myMaterial">

<!-- Reference the texture named myImage and pass it

to the BRDF as the reflectance parameter -->

<ref name="reflectance" id="myImage"/>

</bsdf>

<shape type="obj">

<string name="filename" value="meshes/myShape.obj"/>

<!-- Reference the material named myMaterial -->

<ref id="myMaterial"/>

</shape>

</scene>

By providing a unique id attribute in the object declaration, the object is bound to that identiier

upon instantiation. Referencing this identiier at a later point (using the <ref id="..."/> tag) will

add the instance to the parent object, with no further memory allocation taking place. Note that some

plugins expect their child objects to be named8. For this reason, a name can also be associated with

8For instance, material plugins such as diffuse require that nested texture instances explicitly specify the parameter to

which they want to bind (e.g. “reflectance”).

28

6. Scene file format 6.4. Including external files

the reference.

Note that while this feature is meant to eiciently handle materials, textures, and participating

media that are referenced from multiple places, it cannot be used to instantiate geometry—if this

functionality is needed, take a look at the instance plugin.

6.4. Including external iles

A scene can be split into multiple pieces for better readability. to include an external ile, please use

the following command:

<include filename="nested-scene.xml"/>

In this case, the ile nested-scene.xml must be a proper scene ile with a <scene> tag at the

root. his feature is sometimes very convenient in conjunction with the -D key=value lag of the

mitsuba command line renderer (see the previous section for details). his lets you include difer-

ent parts of a scene coniguration by changing the command line parameters (and without having to

touch the XML ile):

<include filename="nested-scene-$version.xml"/>

6.5. Aliases

Sometimes, it can be useful to associate an object (e.g. a scattering model) with multiple identiiers.

his can be accomplished using the alias as=.. keyword:

<bsdf type="diffuse" id="myMaterial1"/>

<alias id="myMaterial1" as="myMaterial2"/>

Ater this statement, the difuse scattering model will be bound to both identiiers “myMaterial1”

and “myMaterial2”.

29

7. Miscellaneous topics 7. Miscellaneous topics

7. Miscellaneous topics

7.1. A word about color spaces

When using one of the downloadable release builds of Mitsuba, or a version that was compiled with

the default settings, the renderer internally operates in RGB mode: all computations are performed

using a representation that is based on the three colors red, green, and blue.

More speciically, these are the intensities of the red, green, and blue primaries deined by the sRGB

standard (ITU-R Rec. BT. 709-3 primaries with a D65 white point). Mitsuba transparently converts

all input data (e.g. textures) into this space before rendering. his is an intuitive default which yields

fast computations and satisfactory results for most applications.

Low dynamic range images exported using the ldrfilm will be stored in a sRGB-compatible for-

mat that accounts for the custom gamma curves mandated by this standard. hey should display as

intended across a wide range of display devices.

When saving high dynamic range output (e.g. OpenEXR, RGBE, or PFM), the computed radiance

values are exported in a linear form (i.e. without having the sRGB gamma curve applied to it), which

is the most common way of storing high dynamic range data. It is important to keep in mind that

other applications may not support this “linearized sRGB” space—in particular, the Mac OS preview

currently does not display images with this encoding correctly.

7.1.1. Spectral rendering

Some predictive rendering applications will require a more realistic space for interrelection compu-

tations. In such cases, Mitsuba can be switched to spectral mode. his can be done by compiling it

with the SPECTRUM_SAMPLES=n parameter (Section 4), where n is usually between 15 and 30.

Now, all input parameters are converted into color spectra with the speciied number of discretiza-

tions, and the computation then proceeds using this space. he process of writing an output image

works diferently: when spectral output is desired (hdrfilm, tiledhdrfilm, and mfilm support

this), Mitsuba creates special image iles with many color channels (one per spectral band). Gener-

ally, other applications will not be able to display these images. he Mitsuba GUI can be used to view

them, however (simply drag & drop an image onto the application).

It is also possible to write out XYZ tristimulus values, in which case the spectral data is convolved

with the CIE 1931 color matching curves. his is most useful to users who want to do their own color

processing in a space with a wide gamut.

Finally, sRGB output is still possible. However, the color processing used in this case is fairly naïve:

out-of-gamut values are simply clipped. his is something that may be improved in the future (e.g.

by making use of a color management library like lcms2)

30

8. Plugin reference 8. Plugin reference

8. Plugin reference

he following subsections describe the available Mitsuba plugins, usually along with example render-

ings and a description of what each parameter does. hey are separated into subsections covering

textures, surface scattering models, etc.

Each subsection begins with a brief general description. he documentation of a plugin always

starts on a new page and is preceded by a table similar to the one below:

Parameter Type Description

softRays boolean Try not to damage objects in the scene by shooting soter
rays (Default: false)

darkMatter float Controls the proportionate amount of dark matter present
in the scene. (Default: 0.83)

Suppose this hypothetical plugin is an integrator named amazing. hen, based on this description,

it can be instantiated from an XML scene ile using a custom coniguration such as:

<integrator type="amazing">

<boolean name="softerRays" value="true"/>

<float name="darkMatter" value="0.4"/>

</integrator>

In some cases9, plugins also indicate that they accept nested plugins as input arguments. hese can

either be named or unnamed. If the amazing integrator also accepted the following two parameters

Parameter Type Description

(Nested plugin) integrator A nested integrator which does the actual hard work

puppies texture his must be used to supply a cute picture of puppies

then it can be instantiated e.g. as follows

<integrator type="amazing">

<boolean name="softerRays" value="true"/>

<float name="darkMatter" value="0.4"/>

<integrator type="path"/>

<texture name="puppies" type="bitmap">

<string name="filename" value="cute.jpg"/>

</texture>

</integrator>

or, if these were already instantiated previously and are now bound to the identiiers (Section 6)

myPathTracer and myTexture, the following also works:

<integrator type="amazing">

<boolean name="softerRays" value="true"/>

<float name="darkMatter" value="0.4"/>

<ref id="myPathTracer"/>

<ref name="puppies" id="myTexture"/>

</integrator>

9Note that obvious parameters are generally omitted. For instance, all shape plugins accept a surface scattering plugin,

but this is let out from the documentation for brevity.

31

8. Plugin reference 8.1. Shapes

8.1. Shapes

his section presents an overview of the shape plugins that are released along with the renderer.

In Mitsuba, shapes deine surfaces that mark transitions between diferent types of materials. For

instance, a shape could describe a boundary between air and a solid object, such as a piece of rock.

Alternatively, a shape can mark the beginning of a region of space that isn’t solid at all, but rather

contains a participating medium, such as smoke or steam. Finally, a shape can be used to create an

object that emits light on its own.

Shapes are usually declared along with a surface scattering model (named “BSDF”, see Section 8.2

for details). his BSDF characterizes what happens at the surface. In the XML scene description

language, this might look like the following:

<scene version="0.4.4">

<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">

... bsdf parameters ..

</bsdf>

<!-- Alternatively: reference a named BSDF that

has been declared previously

<ref id="myBSDF"/>

-->

</shape>

</scene>

When a shape marks the transition to a participating medium (e.g. smoke, fog, ..), it is furthermore

necessary to provide information about the two media that lie at the interior and exterior of the shape.

his informs the renderer about what happens in the region of space surrounding the surface.

<scene version="0.4.4">

<shape type="... shape type ...">

... shape parameters ...

<medium name="interior" type="... medium type ...">

... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">

... medium parameters ...

</medium>

<!-- Alternatively: reference named media that

have been declared previously

<ref name="interior" id="myMedium1"/>

<ref name="exterior" id="myMedium2"/>

-->

</shape>

</scene>

32

8. Plugin reference 8.1. Shapes

You may have noticed that the previous XML example dit not make any mention of surface scat-

tering models (BSDFs). In Mitsuba, such a shape declaration creates an index-matched boundary.

his means that incident illumination will pass through the surface without undergoing any kind of

interaction. However, the renderer will still uses the information available in the shape to correctly

account for the medium change.

It is also possible to create index-mismatched boundaries between media, where some of the light

is afected by the boundary transition:

<scene version="0.4.4">

<shape type="... shape type ...">

... shape parameters ...

<bsdf type="... bsdf type ...">

... bsdf parameters ..

</bsdf>

<medium name="interior" type="... medium type ...">

... medium parameters ...

</medium>

<medium name="exterior" type="... medium type ...">

... medium parameters ...

</medium>

<!-- Alternatively: reference named media and BSDF

instances that have been declared previously

<ref id="myBSDF"/>

<ref name="interior" id="myMedium1"/>

<ref name="exterior" id="myMedium2"/>

-->

</shape>

</scene>

his constitutes the standard ways in which a shape can be declared. he following subsections discuss

the available types in greater detail.

33

8. Plugin reference 8.1. Shapes

8.1.1. Cube intersection primitive (cube)

Parameter Type Description

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
(Default: none (i.e. object space ≙ world space))

flipNormals boolean Is the cube inverted, i.e. should the normal vectors be
lipped? (Default: false, i.e. the normals point outside)

(a) Basic example (b) A textured and stretched cube with the default param-

eterization (Listing 3)

his shape plugin describes a simple cube/cuboid intersection primitive. By default, it creates a

cube between the world-space positions (−1,−1,−1) and (1, 1, 1). However, an arbitrary linear trans-

formation may be speciied to translate, rotate, scale or skew it as desired. he parameterization of

this shape maps every face onto the rectangle [0, 1]2 in uv space.

<shape type="cube">

<transform name="toWorld">

<scale z="2"/>

</transform>

<bsdf type="diffuse">

<texture type="checkerboard" name="reflectance">

<float name="uvscale" value="6"/>

</texture>

</bsdf>

</shape>

Listing 3: Example of a textured and stretched cube

34

8. Plugin reference 8.1. Shapes

8.1.2. Sphere intersection primitive (sphere)

Parameter Type Description

center point Center of the sphere in object-space (Default: (0, 0, 0))

radius float Radius of the sphere in object-space units (Default: 1)

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space ≙ world space))

flipNormals boolean Is the sphere inverted, i.e. should the normal vectors be
lipped? (Default: false, i.e. the normals point outside)

(a) Basic example, see Listing 4 (b) A textured sphere with the default parameterization

his shape plugin describes a simple sphere intersection primitive. It should always be preferred

over sphere approximations modeled using triangles.

<shape type="sphere">

<transform name="toWorld">

<scale value="2"/>

<translate x="1" y="0" z="0"/>

</transform>

<bsdf type="diffuse"/>

</shape>

<shape type="sphere">

<point name="center" x="1" y="0" z="0"/>

<float name="radius" value="2"/>

<bsdf type="diffuse"/>

</shape>

Listing 4: Asphere can either be conigured using a lineartoWorld transformation or thecenter andradius
parameters (or both). he above two declarations are equivalent.

When a sphere shape is turned into an area light source, Mitsuba switches to an eicient sampling

strategy [41] that has particularly low variance. his makes it a good default choice for lighting new

scenes (Figure 3).

35

8. Plugin reference 8.1. Shapes

(a) Spherical area light modeled using triangles (b) Spherical area light modeled using the sphere plugin

Figure 3: Area lights built from the combination of the area and sphere plugins produce renderings that
have an overall lower variance.

<shape type="sphere">

<point name="center" x="0" y="1" z="0"/>

<float name="radius" value="1"/>

<emitter type="area">

<blackbody name="intensity" temperature="7000K"/>

</emitter>

</shape>

Listing 5: Instantiation of a sphere emitter

36

8. Plugin reference 8.1. Shapes

8.1.3. Cylinder intersection primitive (cylinder)

Parameter Type Description

p0 point Object-space starting point of the cylinder’s centerline (De-
fault: (0, 0, 0))

p1 point Object-space endpoint of the cylinder’s centerline (Default:
(0, 0, 1))

radius float Radius of the cylinder in object-space units (Default: 1)

flipNormals boolean Is the cylinder inverted, i.e. should the normal vectors be
lipped? (Default: false, i.e. the normals point outside)

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none (i.e. object space ≙ world space))

(a) Cylinder with the default one-sided shading (b) Cylinder with two-sided shading, see Listing 6

his shape plugin describes a simple cylinder intersection primitive. It should always be preferred

over approximations modeled using triangles. Note that the cylinder does not have endcaps – also,

it’s interior has inward-facing normals, which most scattering models in Mitsuba will treat as fully

absorbing. If this is not desirable, consider using the twosided plugin.

<shape type="cylinder">

<float name="radius" value="0.3"/>

<bsdf type="twosided">

<bsdf type="diffuse"/>

</bsdf>

</shape>

Listing 6: A simple example for instantiating a cylinder, whose interior is visible

37

8. Plugin reference 8.1. Shapes

8.1.4. Rectangle intersection primitive (rectangle)

Parameter Type Description

toWorld transform or
animation

Speciies a linear object-to-world transformation. It is al-
lowed to use non-uniform scaling, but no shear. (Default:
none (i.e. object space ≙ world space))

flipNormals boolean Is the rectangle inverted, i.e. should the normal vectors be
lipped? (Default: false)

(a) Two rectangles conigured as a relective surface and

an emitter (Listing 7)

his shape plugin describes a simple rectangular intersection primitive. It is mainly provided as a

convenience for those cases when creating and loading an external mesh with two triangles is simply

too tedious, e.g. when an area light source or a simple ground plane are needed.

By default, the rectangle covers the XY-range [−1, 1] × [−1, 1] and has a surface normal that points

into the positive Z direction. To change the rectangle scale, rotation, or translation, use the toWorld

parameter.

<scene version="0.4.4">

<shape type="rectangle">

<bsdf type="diffuse"/>

</shape>

<shape type="rectangle">

<transform name="toWorld">

<rotate x="1" angle="90"/>

<scale x="0.4" y="0.3" z="0.2"/>

<translate y="1" z="0.2"/>

</transform>

<emitter type="area">

<spectrum name="intensity" value="3"/>

</emitter>

</shape>

<!-- ... other definitions ... -->

</scene>

Listing 7: A simple example involving two rectangle instances

38

8. Plugin reference 8.1. Shapes

8.1.5. Disk intersection primitive (disk)

Parameter Type Description

toWorld transform or
animation

Speciies a linear object-to-world transformation. Note that
non-uniform scales are not permitted! (Default: none (i.e.
object space ≙ world space))

flipNormals boolean Is the disk inverted, i.e. should the normal vectors be
lipped? (Default: false)

(a) Rendering with an disk emitter and a textured disk,

showing the default parameterization. (Listing 8)

his shape plugin describes a simple disk intersection primitive. It is usually preferable over dis-

crete approximations made from triangles.

By default, the disk has unit radius and is located at the origin. Its surface normal points into the

positive Z direction. To change the disk scale, rotation, or translation, use the toWorld parameter.

<scene version="0.4.4">

<shape type="disk">

<bsdf type="diffuse">

<texture name="reflectance" type="checkerboard">

<float name="uvscale" value="5"/>

</texture>

</bsdf>

</shape>

<shape type="disk">

<transform name="toWorld">

<rotate x="1" angle="90"/>

<scale value="0.3"/>

<translate y="1" z="0.3"/>

</transform>

<emitter type="area">

<spectrum name="intensity" value="4"/>

</emitter>

</shape>

</scene>

Listing 8: A simple example involving two disk instances

39

8. Plugin reference 8.1. Shapes

8.1.6. Wavefront OBJ mesh loader (obj)

Parameter Type Description

filename string Filename of the OBJ ile that should be loaded

faceNormals boolean When set to true, any existing or computed vertex normals
are discarded and face normals will instead be used during
rendering. his gives the rendered object a faceted apper-
ance. (Default: false)

maxSmoothAngle float When speciied, Mitsuba will discard all vertex normals in
the input mesh and rebuild them in a way that is sensitive
to the presence of creases and corners. For more details on
this parameter, see below. Disabled by default.

flipNormals boolean Optional lag to lip all normals. (Default: false, i.e. the
normals are let unchanged).

flipTexCoords boolean Treat the vertical component of the texture as inverted?
Most OBJ iles use this convention. (Default: true, i.e. lip
them to get the correct coordinates).

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
(Default: none (i.e. object space ≙ world space))

(a) An example scene with both geometry and materials imported using the Wavefront OBJ mesh loader (Neu Rungholt

model courtesy of kescha, converted fromMinecrat to OBJ by Morgan McGuire)

his plugin implements a simple loader for Wavefront OBJ iles. It handles meshes containing

triangles and quadrilaterals, and it also imports vertex normals and texture coordinates.

Loading an ordinary OBJ ile is as simple as writing:

40

8. Plugin reference 8.1. Shapes

<shape type="obj">

<string name="filename" value="myShape.obj"/>

</shape>

Material import: When the OBJ ile references a Wavefront material description (a .mtl ile), Mit-

suba attempts to reproduce the material within and associate it with the shape. his is restricted to

fairly basic materials and textures, hence in most cases it will be preferable to override this behavior

by specifying an explicit Mitsuba BSDF that should be used instead. his can be done by passing it

as a child argument, e.g.

<shape type="obj">

<string name="filename" value="myShape.obj"/>

<bsdf type="roughplastic">

<rgb name="diffuseReflectance" value="0.2, 0.6, 0.3"/>

</bsdf>

</shape>

he mtlmaterial attributes that are automatically handled by Mitsuba include:

• Difuse and glossy materials (optionally textured)

• Smooth glass and metal

• Textured transparency

• Bump maps

In some cases, OBJ iles contain multiple objects with diferent associated materials. In this case,

the materials can be overwritten individually, by specifying the corresponding names. For instance,

if the OBJ ile contains two materials named Glass and Water, these can be overwritten as follows

<shape type="obj">

<string name="filename" value="myShape.obj"/>

<bsdf name="Glass" type="dielectric">

<float name="intIOR" value="1.5"/>

</bsdf>

<bsdf name="Water" type="dielectric">

<float name="intIOR" value="1.333"/>

</bsdf>

</shape>

he maxSmoothAngle parameter: When given a mesh without vertex normals, Mitsuba will by

default create a smoothly varying normal ield over the entire shape. his can produce undesirable

output when the input mesh contains regions that are intentionally not smooth (i.e. corners, creases).

Meshes that do include vertex normals sometimes incorrectly interpolate normals over such regions,

leading to much the same problem.

he maxSmoothAngle parameter can be issued to force inspection of the dihedral angle associated

with each edge in the input mesh and disable normal interpolation locally where this angle exceeds

a certain threshold value. A reasonable value might be something like 30 (degrees). he underlying

41

8. Plugin reference 8.1. Shapes

analysis is somewhat costly and hence this parameter should only be used when it is actually needed

(i.e. when the mesh contains creases or edges and does not come with valid vertex normals).

Remarks:

• he plugin currently only supports loading meshes constructed from triangles and quadrilaterals.

• Importing geometry via OBJ iles should only be used as an absolutely last resort. Due to inherent
limitations of this format, the iles tend to be unreasonably large, and parsing them requires signif-
icant amounts of memory and processing power. What’s worse is that the internally stored data is
oten truncated, causing a loss of precision.

If possible, use the ply or serialized plugins instead. For convenience, it is also possible to
convert legacy OBJ iles into .serialized iles using the mtsimport utility. Using the resulting
output will signiicantly accelerate the scene loading time.

42

8. Plugin reference 8.1. Shapes

8.1.7. PLY (Stanford Triangle Format) mesh loader (ply)

Parameter Type Description

filename string Filename of the PLY ile that should be loaded

faceNormals boolean When set to true, Mitsuba will use face normals when ren-
dering the object, which will give it a faceted apperance.
(Default: false)

maxSmoothAngle float When speciied, Mitsuba will discard all vertex normals in
the input mesh and rebuild them in a way that is sensitive
to the presence of creases and corners. For more details on
this parameter, see page 41. Disabled by default.

flipNormals boolean Optional lag to lip all normals. (Default: false, i.e. the
normals are let unchanged).

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
(Default: none (i.e. object space ≙ world space))

srgb boolean When set to true, any vertex colors will be interpreted as
sRGB, instead of linear RGB (Default: true).

(a) he PLY plugin is useful for loading large geometry.

(Dragon statue courtesy of XYZ RGB)

(b) he Stanford bunny loaded with faceNormals=true.

Note the faceted appearance.

his plugin implements a fast loader for the Stanford PLY format (both the ASCII and binary for-

mat). It is based on the libply library by Ares Lagae (http://people.cs.kuleuven.be/~ares.

lagae/libply). he current plugin implementation supports triangle meshes with optional UV

coordinates, vertex normals, and vertex colors.

When loading meshes that contain vertex colors, note that they need to be explicitly referenced in

a BSDF using a special texture named vertexcolors.

43

http://people.cs.kuleuven.be/~ares.lagae/libply
http://people.cs.kuleuven.be/~ares.lagae/libply

8. Plugin reference 8.1. Shapes

8.1.8. Serialized mesh loader (serialized)

Parameter Type Description

filename string Filename of the geometry ile that should be loaded

shapeIndex integer A .serialized ile may contain several separate meshes.
his parameter speciies which one should be loaded. (De-
fault: 0, i.e. the irst one)

faceNormals boolean When set to true, any existing or computed vertex normals
are discarded and face normals will instead be used during
rendering. his gives the rendered object a faceted apper-
ance. (Default: false)

maxSmoothAngle float When speciied, Mitsuba will discard all vertex normals in
the input mesh and rebuild them in a way that is sensitive
to the presence of creases and corners. For more details on
this parameter, see page 41. Disabled by default.

flipNormals boolean Optional lag to lip all normals. (Default: false, i.e. the
normals are let unchanged).

toWorld transform or
animation

Speciies an optional linear object-to-world transformation.
(Default: none (i.e. object space ≙ world space))

he serialized mesh format represents the most space and time-eicient way of getting geometry

information into Mitsuba. It stores indexed triangle meshes in a lossless gzip-based encoding that

(ater decompression) nicely matches up with the internally used data structures. Loading such iles

is considerably faster than the ply plugin and orders of magnitude faster than the obj plugin.

Format description: he serialized ile format uses the little endian encoding, hence all ields

below should be interpreted accordingly. he contents are structured as follows:

Type Content

uint16 File format identiier: 0x041C

uint16 File version identiier. Currently set to 0x0004

From this point on, the stream is compressed by the DEFLATE algorithm.

he used encoding is that of the zlib library.

uint32 An 32-bit integer whose bits can be used to specify the following lags:

0x0001 he mesh data includes per-vertex normals

0x0002 he mesh data includes texture coordinates

0x0008 he mesh data includes vertex colors

0x0010 Use face normals instead of smothly interpolated vertex nor-

mals. Equivalent to specifying faceNormals=true to the plugin.

0x1000 he subsequent content is represented in single precision

0x2000 he subsequent content is represented in double precision

string A null-terminated string (utf-8), which denotes the name of the shape.

44

8. Plugin reference 8.1. Shapes

uint64 Number of vertices in the mesh

uint64 Number of triangles in the mesh

array Array of all vertex positions (X, Y, Z, X, Y, Z, ...) speciied in binary single

or double precision format (as denoted by the lags)

array Array of all vertex normal directions (X, Y, Z, X, Y, Z, ...) speciied in

binary single or double precision format. When the mesh has no vertex

normals, this ield is omitted.

array Array of all vertex texture coordinates (U, V, U, V, ...) speciied in binary

single or double precision format. When the mesh has no texture coordi-

nates, this ield is omitted.

array Array of all vertex colors (R, G, B, R, G, B, ...) speciied in binary single or

double precision format. When the mesh has no vertex colors, this ield

is omitted.

array Indexed triangle data ([i1, i2, i3], [i1, i2, i3], ..) speciied in

uint32 or in uint64 format (the latter is used when the number of ver-

tices exceeds 0xFFFFFFFF).

Multiple shapes: It is possible to store multiple meshes in a single .serialized ile. his is done

by simply concatenating their data streams, where every one is structured according to the above

description. Hence, ater each mesh, the stream briely reverts back to an uncompressed format,

followed by an uncompressed header, and so on. his is neccessary for eicient read access to arbitrary

sub-meshes.

End-of-ile dictionary: In addition to the previous table, a .serialized ile also concludes with

a brief summary at the end of the ile, which speciies the starting position of each sub-mesh:

Type Content

uint64 File ofset of the irst mesh (in bytes)—this is always zero.

uint64 File ofset of the second mesh

⋯ ⋯
uint64 File ofset of the last sub-shape

uint32 Total number of meshes in the .serialized ile

45

8. Plugin reference 8.1. Shapes

8.1.9. Shape group for geometry instancing (shapegroup)

Parameter Type Description

(Nested plugin) shape One ormore shapes that should bemade available for geom-
etry instancing

his plugin implements a container for shapes that should be made available for geometry instanc-

ing. Any shapes placed in a shapegroup will not be visible on their own—instead, the renderer will

precompute ray intersection acceleration data structures so that they can eiciently be referenced

many times using the instance plugin. his is useful for rendering things like forests, where only a

few distinct types of trees have to be kept in memory. An example is given below:

<!-- Declare a named shape group containing two objects -->

<shape type="shapegroup" id="myShapeGroup">

<shape type="ply">

<string name="filename" value="data.ply"/>

<bsdf type="roughconductor"/>

</shape>

<shape type="sphere">

<transform name="toWorld">

<scale value="5"/>

<translate y="20"/>

</transform>

<bsdf type="diffuse"/>

</shape>

</shape>

<!-- Instantiate the shape group without any kind of transformation -->

<shape type="instance">

<ref id="myShapeGroup"/>

</shape>

<!-- Create instance of the shape group, but rotated, scaled, and translated -->

<shape type="instance">

<ref id="myShapeGroup"/>

<transform name="toWorld">

<rotate x="1" angle="45"/>

<scale value="1.5"/>

<translate z="10"/>

</transform>

</shape>

Listing 9: An example of geometry instancing

46

8. Plugin reference 8.1. Shapes

8.1.10. Geometry instance (instance)

Parameter Type Description

(Nested plugin) shapegroup A reference to a shape group that should be instantiated

toWorld transform or
animation

Speciies an optional linear instance-to-world transforma-
tion. (Default: none (i.e. instance space ≙ world space))

(a) Surface viewed from the top (b) Surface viewed from the bottom

Figure 4: A visualization of a fractal surface by Irving and Segerman. (a 2D Gospel curve developed up to
level 5 along the third dimension). his scene makes use of instancing to replicate similar structures
to cheaply render a shape that efectively consists of several hundred millions of triangles.

his plugin implements a geometry instance used to eiciently replicate geometry many times. For

details on how to create instances, refer to the shapegroup plugin.

Remarks:

• Note that it is not possible to assign a diferentmaterial to each instance— thematerial assignment
speciied within the shape group is the one that matters.

• Shape groups cannot be used to replicate shapes with attached emitters, sensors, or subsurface
scattering models.

47

8. Plugin reference 8.1. Shapes

8.1.11. Hair intersection shape (hair)

Parameter Type Description

filename string Filename of the hair data ile that should be loaded

radius float Radius of the hair segments in world-space units (Default:
0.025, which assumes that the scene is modeled in millime-
ters.).

angleThreshold float For performance reasons, the plugin will merge adjacent
hair segments when the angle of their tangent directions is
below than this value (in degrees). (Default: 1).

reduction float When the reduction ratio is set to a value between zero and
one, the hair plugin stochastically culls this portion of the
input data (where 1 corresponds to removing all hairs). To
approximately preserve the appearance in renderings, the
hair radius is enlarged (see Cook et al. [6]). his parameter
is convenient for fast previews. (Default: 0, i.e. all geometry
is rendered)

toWorld transform Speciies an optional linear object-to-world transformation.
Note that non-uniform scales are not permitted! (Default:
none, i.e. object space ≙ world space)

Figure 5: Aclose-up of the hair shape renderedwith a difuse scatteringmodel (an actual hair scatteringmodel
will be needed for realistic apperance)

he plugin implements a space-eicient acceleration structure for hairs made from many straight

cylindrical hair segments with miter joints. he underlying idea is that intersections with straight

cylindrical hairs can be found quite eiciently, and curved hairs are easily approximated using a series

of such segments.

he plugin supports two diferent input formats: a simple (but not particularly eicient) ASCII

format containing the coordinates of a hair vertex on every line. An empty line marks the beginning

of a new hair. he following snippet is an example of this format:

48

8. Plugin reference 8.1. Shapes

.....

-18.5498 -21.7669 22.8138

-18.6358 -21.3581 22.9262

-18.7359 -20.9494 23.0256

-30.6367 -21.8369 6.78397

-30.7289 -21.4145 6.76688

-30.8226 -20.9933 6.73948

.....

here is also a binary format, which starts with the identiier “BINARY_HAIR” (11 bytes), followed

by the number of vertices as a 32-bit little endian integer. he remainder of the ile consists of the

vertex positions stored as single-precision XYZ coordinates (again in little-endian byte ordering). To

mark the beginning of a new hair strand, a single +∞ loating point value can be inserted between

the vertex data.

49

8. Plugin reference 8.2. Surface scattering models

8.2. Surface scattering models

Smooth plastic material (plastic)

...

Smooth di�use material (diffuse)

Smooth di�use transmitter (difftrans)

Smooth conducting material (conductor)

Di�use scattering

Rough/bumpy surface

Rough plastic material (roughplastic)

Smooth surface Exterior (normal-facing side)

Interior-facing side

Clear coating

Tinted layer

Scattering layer

Arbitrary BSDF?

Incident illumination

Scattered illumination
(secondary component)

Scattered illumination
(tertiary component)

Lobe shape/presence is up
to the nested model

Scattered illumination
(primary component)

Smooth dielectric material (dielectric)

Rough conducting material (roughconductor)Rough di�use material (roughdiffuse)

Smooth dielectric coating (coating)

?

Legend

?

?

Bump map modi�er (bump)

?

?

Rough dielectric material (roughdielectric)

?

?

Single-scattering layer (hk)

...

Figure 6: Schematic overview of the most important surface scattering models in Mitsuba (shown in the style
ofWeidlich andWilkie [51]). he arrows indicate possible outcomes of an interaction with a surface
that has the respective model applied to it.

Surface scattering models describe the manner in which light interacts with surfaces in the scene.

hey conveniently summarize the mesoscopic scattering processes that take place within the material

and cause it to look the way it does. his represents one central component of the material system in

Mitsuba—another part of the renderer concerns itself with what happens in between surface interac-

tions. For more information on this aspect, please refer to Sections 8.5 and 8.4. his section presents

an overview of all surface scattering models that are supported, along with their parameters.

BSDFs

To achieve realistic results, Mitsuba comes with a library of both general-purpose surface scattering

models (smooth or rough glass, metal, plastic, etc.) and specializations to particular materials (woven

cloth, masks, etc.). Some model plugins it neither category and can best be described as modiiers

that are applied on top of one or more scattering models.

hroughout the documentation and within the scene description language, the word BSDF is used

synonymously with the term “surface scattering model”. his is an abbreviation for Bidirectional Scat-

50

8. Plugin reference 8.2. Surface scattering models

tering Distribution Function, a more precise technical term.

In Mitsuba, BSDFs are assigned to shapes, which describe the visible surfaces in the scene. In

the scene description language, this assignment can either be performed by nesting BSDFs within

shapes, or they can be named and then later referenced by their name. he following fragment shows

an example of both kinds of usages:

<scene version="0.4.4">

<!-- Creating a named BSDF for later use -->

<bsdf type=".. BSDF type .." id="myNamedMaterial">

<!-- BSDF parameters go here -->

</bsdf>

<shape type="sphere">

<!-- Example of referencing a named material -->

<ref id="myNamedMaterial"/>

</shape>

<shape type="sphere">

<!-- Example of instantiating an unnamed material -->

<bsdf type=".. BSDF type ..">

<!-- BSDF parameters go here -->

</bsdf>

</shape>

</scene>

It is generally more economical to use named BSDFs when they are used in several places, since this

reduces Mitsuba’s internal memory usage.

Correctness considerations

A vital consideration when modeling a scene in a physically-based rendering system is that the used

materials do not violate physical properties, and that their arrangement is meaningful. For instance,

IOR = 1.33

IOR = 1.50

IOR = 1.00

Interior IOR Exterior IORSurface

1.33

1.33

1.00

1.50

1.50 1.00

(a) Slice through a glass
�lled with water

(b) Description using
 surfaces in Mitsuba

(c) Detailed IOR transitions

(normals in gray)

Figure 7: Some of the scatteringmodels inMitsuba need to know the indices of refraction on the exterior and
interior-facing side of a surface. It is therefore important to decompose the mesh into meaningful
separate surfaces corresponding to each index of refraction change. he example here shows such a
decomposition for a water-illed Glass.

51

8. Plugin reference 8.2. Surface scattering models

imagine having designed an architectural interior scene that looks good except for a white desk that

seems a bit too dark. A closer inspection reveals that it uses a Lambertian material with a difuse

relectance of 0.9.

In many rendering systems, it would be feasible to increase the relectance value above 1.0 in such

a situation. But in Mitsuba, even a small surface that relects a little more light than it receives will

likely break the available rendering algorithms, or cause them to produce otherwise unpredictable

results. In fact, the right solution in this case would be to switch to a diferent the lighting setup that

causes more illumination to be received by the desk and then reduce the material’s relectance—ater

all, it is quite unlikely that one could ind a real-world desk that relects 90% of all incident light.

As another example of the necessity for a meaningful material description, consider the glass model

illustrated in Figure 7. Here, careful thinking is needed to decompose the object into boundaries

that mark index of refraction-changes. If this is done incorrectly and a beam of light can potentially

pass through a sequence of incompatible index of refraction changes (e.g. 1.00 → 1.33 followed by

1.50 → 1.33), the output is undeined and will quite likely even contain inaccuracies in parts of the

scene that are far away from the glass.

52

8. Plugin reference 8.2. Surface scattering models

8.2.1. Smooth difuse material (diffuse)

Parameter Type Description

reflectance spectrum or
texture

Speciies the difuse albedo of the material (Default: 0.5)

(a) Homogeneous relectance, see Listing 10 (b) Textured relectance, see Listing 11

he smooth difuse material (also referred to as “Lambertian”) represents an ideally difuse material

with a user-speciied amount of relectance. Any received illumination is scattered so that the surface

looks the same independently of the direction of observation.

Apart from a homogeneous relectance value, the plugin can also accept a nested or referenced

texture map to be used as the source of relectance information, which is then mapped onto the shape

based on its UV parameterization. When no parameters are speciied, the model uses the default of

50% relectance.

Note that this material is one-sided—that is, observed from the back side, it will be completely

black. If this is undesirable, consider using the twosided BRDF adapter plugin.

<bsdf type="diffuse">

<srgb name="reflectance" value="#6d7185"/>

</bsdf>

Listing 10: A difuse material, whose relectance is speciied as an sRGB color

<bsdf type="diffuse">

<texture type="bitmap" name="reflectance">

<string name="filename" value="wood.jpg"/>

</texture>

</bsdf>

Listing 11: A difuse material with a texture map

53

8. Plugin reference 8.2. Surface scattering models

8.2.2. Rough difuse material (roughdiffuse)

Parameter Type Description

reflectance spectrum or
texture

Speciies the difuse albedo of the material. (Default: 0.5)

alpha spectrum or
texture

Speciies the roughness of the unresolved surface micro-
geometry using the root mean square (RMS) slope of the
microfacets. (Default: 0.2)

useFastApprox boolean his parameter selects between the full version of themodel
or a fast approximation that still retainsmost qualitative fea-
tures. (Default: false, i.e. use the high-quality version)

(a) Smooth difuse surface (α = 0) (b) Very rough difuse surface (α = 0.7)

Figure 8: he efect of switching from smooth to rough difuse scattering is fairly subtle on this model—
generally, there will be higher relectance at grazing angles, as well as an overall reduced contrast.

his relectance model describes the interaction of light with a rough difuse material, such as plas-

ter, sand, clay, or concrete, or “powdery” surfaces. he underlying theory was developed by Oren

and Nayar [35], who model the microscopic surface structure as unresolved planar facets arranged

in V-shaped grooves, where each facet is an ideal difuse relector. he model takes into account

shadowing, masking, as well as interrelections between the facets.

Since the original publication, this approach has been shown to be a good match for many real-

world materials, particularly compared to Lambertian scattering, which does not take surface rough-

ness into account.

he implementation in Mitsuba uses a surface roughness parameter α that is slightly diferent from

the slope-area variance in the original 1994 paper. he reason for this change is to make the parameter

α portable across diferent models (i.e. roughdielectric, roughplastic, roughconductor).

To get an intuition about the efect of the parameter α, consider the following approximate classii-

cation: a value of α ≙ 0.001−0.01 corresponds to a material with slight imperfections on an otherwise

smooth surface (for such small values, the model will behave identically to diffuse), α ≙ 0.1 is rela-

tively rough, and α ≙ 0.3 − 0.7 is extremely rough (e.g. an etched or ground surface).

Note that this material is one-sided—that is, observed from the back side, it will be completely

black. If this is undesirable, consider using the twosided BRDF adapter plugin.

54

8. Plugin reference 8.2. Surface scattering models

8.2.3. Smooth dielectric material (dielectric)

Parameter Type Description

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or
texture

Optional factor that can be used to modulate the specular
transmission component. Note that for physical realism,
this parameter should never be touched. (Default: 1.0)

(a) Air↔Water (IOR: 1.33) interface.

See Listing 12.

(b) Air↔Diamond (IOR: 2.419) (c) Air↔Glass (IOR: 1.504) interface

with absorption. See Listing 13.

his plugin models an interface between two dielectric materials having mismatched indices of re-

fraction (for instance, water and air). Exterior and interior IOR values can be speciied independently,

where “exterior” refers to the side that contains the surface normal. When no parameters are given,

the plugin activates the defaults, which describe a borosilicate glass BK7/air interface.

In this model, the microscopic structure of the surface is assumed to be perfectly smooth, resulting

in a degenerate10 BSDF described by a Dirac delta distribution. For a similar model that instead

describes a rough surface microstructure, take a look at the roughdielectric plugin.

<shape type="...">

<bsdf type="dielectric">

<string name="intIOR" value="water"/>

<string name="extIOR" value="air"/>

</bsdf>

<shape>

Listing 12: A simple air-to-water interface

When using this model, it is crucial that the scene contains meaningful and mutually compatible

indices of refraction changes—see Figure 7 for a description of what this entails.

In many cases, we will want to additionally describe the medium within a dielectric material. his

10Meaning that for any given incoming ray of light, the model always scatters into a discrete set of directions, as opposed

to a continuum.

55

8. Plugin reference 8.2. Surface scattering models

requires the use of a rendering technique that is aware of media (e.g. the volumetric path tracer). An

example of how one might describe a slightly absorbing piece of glass is shown below:

<shape type="...">

<bsdf type="dielectric">

<float name="intIOR" value="1.504"/>

<float name="extIOR" value="1.0"/>

</bsdf>

<medium type="homogeneous" name="interior">

<rgb name="sigmaS" value="0, 0, 0"/>

<rgb name="sigmaA" value="4, 4, 2"/>

</medium>

<shape>

Listing 13: A glass material with absorption (based on the Beer-Lambert law). his material can only be used
by an integrator that is aware of participating media.

Name Value Name Value

vacuum 1.0 bromine 1.661

helium 1.00004 water ice 1.31

hydrogen 1.00013 fused quartz 1.458

air 1.00028 pyrex 1.470

carbon dioxide 1.00045 acrylic glass 1.49

water 1.3330 polypropylene 1.49

acetone 1.36 bk7 1.5046

ethanol 1.361 sodium chloride 1.544

carbon tetrachloride 1.461 amber 1.55

glycerol 1.4729 pet 1.575

benzene 1.501 diamond 2.419

silicone oil 1.52045

Table 3: his table lists all supported material names along with along with their associated index of re-
fraction at standard conditions. hese material names can be used with the plugins dielectric,
roughdielectric, plastic, roughplastic, as well as coating.

Remarks:

• Dispersion is currently unsupported but will be enabled in a future release.

56

8. Plugin reference 8.2. Surface scattering models

8.2.4. hin dielectric material (thindielectric)

Parameter Type Description

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or
texture

Optional factor that can be used to modulate the specular
transmission component. Note that for physical realism,
this parameter should never be touched. (Default: 1.0)

his plugin models a thin dielectric material that is embedded inside another dielectric—for in-

stance, glass surrounded by air. he interior of the material is assumed to be so thin that its efect on

transmitted rays is negligible, Hence, light exits such a material without any form of angular delec-

tion (though there is still specular relection).

his model should be used for things like glass windows that were modeled using only a single

sheet of triangles or quads. On the other hand, when the window consists of proper closed geometry,

dielectric is the right choice. his is illustrated below:

(a) he dielectric plugin models

a single transition from one in-

dex of refraction to another

...

(b) he thindielectric plugin

models a pair of interfaces caus-

ing a transient index of refrac-

tion change

(c) Windows modeled using a single

sheet of geometry are the most

frequent application of this BSDF

Figure 9: An illustration of the diference between the dielectric and thindielectric plugins

he implementation correctly accounts for multiple internal relections inside the thin dielectric at

no signiicant extra cost, i.e. paths of the type R, TRT , TR3T , .. for relection and TT , TR2, TR4T , ..

for refraction, where T and R denote individual relection and refraction events, respectively.

57

8. Plugin reference 8.2. Surface scattering models

8.2.5. Rough dielectric material (roughdielectric)

Parameter Type Description

distribution string Speciies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. his is the default.

(ii) ggx: New distribution proposed by Walter et al. [47],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution
proposed by Ashikhmin and Shirley [1].

alpha float or
texture

Speciies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope
of the microfacets. his parameter is only valid when
distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or
texture

Speciies the anisotropic roughness values along the tangent
and bitangent directions. hese parameter are only valid
when distribution=as. (Default: 0.1).

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

specular⤦
Transmittance

spectrum or
texture

Optional factor that can be used to modulate the specular
transmission component. Note that for physical realism,
this parameter should never be touched. (Default: 1.0)

his plugin implements a realistic microfacet scattering model for rendering rough interfaces be-

tween dielectric materials, such as a transition from air to ground glass. Microfacet theory describes

rough surfaces as an arrangement of unresolved and ideally specular facets, whose normal directions

are given by a specially chosen microfacet distribution. By accounting for shadowing and masking

efects between these facets, it is possible to reproduce the important of-specular relections peaks

observed in real-world measurements of such materials.

his plugin is essentially the “roughened” equivalent of the (smooth) plugin dielectric. For very

58

8. Plugin reference 8.2. Surface scattering models

(a) Anti-glare glass (Beckmann, α = 0.02) (b) Rough glass (Beckmann, α = 0.1)

low values of α, the two will be identical, though scenes using this plugin will take longer to render

due to the additional computational burden of tracking surface roughness.

he implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-

faces” by Walter et al. [47]. It supports several diferent types of microfacet distributions and has

a texturable roughness parameter. Exterior and interior IOR values can be speciied independently,

where “exterior” refers to the side that contains the surface normal. Similar to the dielectric plugin,

IOR values can either be speciied numerically, or based on a list of known materials (see Table 3 for

an overview). When no parameters are given, the plugin activates the default settings, which describe

a borosilicate glass BK7/air interface with a light amount of roughness modeled using a Beckmann

distribution.

To get an intuition about the efect of the surface roughness parameter α, consider the following

approximate classiication: a value of α ≙ 0.001− 0.01 corresponds to a material with slight imperfec-

tions on an otherwise smooth surface inish, α ≙ 0.1 is relatively rough, and α ≙ 0.3− 0.7 is extremely

rough (e.g. an etched or ground inish).

Please note that when using this plugin, it is crucial that the scene contains meaningful and mutu-

ally compatible index of refraction changes—see Figure 7 for an example of what this entails. Also,

note that the importance sampling implementation of this model is close, but not always a perfect a

perfect match to the underlying scattering distribution, particularly for high roughness values and

when the ggxmicrofacet distribution is used. Hence, such renderings may converge slowly.

Technical details

When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used

to turn the speciied α roughness value into the exponents of these distributions. his is done in a

way, such that the diferent distributions all produce a similar appearance for the same value of α.

he Ashikhmin-Shirley microfacet distribution allows the speciication of two distinct roughness

values along the tangent and bitangent directions. his can be used to provide a material with a

“brushed” appearance. he alignment of the anisotropy will follow the UV parameterization of the

underlying mesh in this case. his also means that such an anisotropic material cannot be applied to

triangle meshes that are missing texture coordinates.

59

8. Plugin reference 8.2. Surface scattering models

(a) Ground glass (GGX, α=0.304, Listing 14) (b) Textured roughness (Listing 15)

<bsdf type="roughdielectric">

<string name="distribution" value="ggx"/>

<float name="alpha" value="0.304"/>

<string name="intIOR" value="bk7"/>

<string name="extIOR" value="air"/>

</bsdf>

Listing 14: Amaterial deinition for ground glass

<bsdf type="roughdielectric">

<string name="distribution" value="beckmann"/>

<float name="intIOR" value="1.5046"/>

<float name="extIOR" value="1.0"/>

<texture name="alpha" type="bitmap">

<string name="filename" value="roughness.exr"/>

</texture>

</bsdf>

Listing 15: A texture can be attached to the roughness parameter

60

8. Plugin reference 8.2. Surface scattering models

8.2.6. Smooth conductor (conductor)

Parameter Type Description

material string Nameof amaterial preset, seeTable 4.(Default: Cu / copper)

eta, k spectrum Real and imaginary components of the material’s index of
refraction (Default: based on the value of material)

extEta float or
string

Real-valued index of refraction of the surrounding dielec-
tric, or a material name of a dielectric (Default: air)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

(a) Measured copper material (the default), rendered us-

ing 30 spectral samples between 360 and 830nm

(b) Measured gold material (Listing 16)

his plugin implements a perfectly smooth interface to a conducting material, such as a metal. For

a similar model that instead describes a rough surface microstructure, take a look at the separately

available roughconductor plugin.

In contrast to dielectric materials, conductors do not transmit any light. heir index of refraction

is complex-valued and tends to undergo considerable changes throughout the visible color spectrum.

To facilitate the tedious task of specifying spectrally-varying index of refraction information, Mit-

suba ships with a set of measured data for several materials, where visible-spectrum information was

publicly available11.

Note that Table 4 also includes several popular optical coatings, which are not actually conduc-

tors. hese materials can also be used with this plugin, though note that the plugin will ignore any

refraction component that the actual material might have had. here is also a special material proile

named none, which disables the computation of Fresnel relectances and produces an idealized 100%

relecting mirror.

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering

to get the most accurate results. While it also works in RGB mode, the computations will be more

11 hese index of refraction values are identical to the data distributed with PBRT. hey are originally from the Luxpop

database (www.luxpop.com) and are based on data by Palik et al. [36] and measurements of atomic scattering factors

made by the Center For X-Ray Optics (CXRO) at Berkeley and the Lawrence Livermore National Laboratory (LLNL).

61

www.luxpop.com

8. Plugin reference 8.2. Surface scattering models

approximate in nature. Also note that this material is one-sided—that is, observed from the back side,

it will be completely black. If this is undesirable, consider using the twosided BRDF adapter plugin.

<shape type="...">

<bsdf type="conductor">

<string name="material" value="Au"/>

</bsdf>

<shape>

Listing 16: Amaterial coniguration for a smooth conductor with measured gold data

It is also possible to load spectrally varying index of refraction data from two external iles containing

the real and imaginary components, respectively (see Section 6.1.3 for details on the ile format):

<shape type="...">

<bsdf type="conductor">

<spectrum name="eta" filename="conductorIOR.eta.spd"/>

<spectrum name="k" filename="conductorIOR.k.spd"/>

</bsdf>

<shape>

Listing 17: Rendering a smooth conductor with custom data

Preset(s) Description Preset(s) Description

a-C Amorphous carbon Na_palik Sodium
Ag Silver Nb, Nb_palik Niobium
Al Aluminium Ni_palik Nickel
AlAs, AlAs_palik Cubic aluminium arsenide Rh, Rh_palik Rhodium
AlSb, AlSb_palik Cubic aluminium antimonide Se, Se_palik Selenium
Au Gold SiC, SiC_palik Hexagonal silicon carbide
Be, Be_palik Polycrystalline beryllium SnTe, SnTe_palik Tin telluride
Cr Chromium Ta, Ta_palik Tantalum
CsI, CsI_palik Cubic caesium iodide Te, Te_palik Trigonal tellurium
Cu, Cu_palik Copper ThF4, ThF4_palik Polycryst. thorium (IV) luoride
Cu2O, Cu2O_palik Copper (I) oxide TiC, TiC_palik Polycrystalline titanium carbide
CuO, CuO_palik Copper (II) oxide TiN, TiN_palik Titanium nitride
d-C, d-C_palik Cubic diamond TiO2, TiO2_palik Tetragonal titan. dioxide
Hg, Hg_palik Mercury VC, VC_palik Vanadium carbide
HgTe, HgTe_palik Mercury telluride V_palik Vanadium
Ir, Ir_palik Iridium VN, VN_palik Vanadium nitride
K, K_palik Polycrystalline potassium W Tungsten
Li, Li_palik Lithium
MgO, MgO_palik Magnesium oxide
Mo, Mo_palik Molybdenum none No mat. proile (→ 100% relecting mirror)

Table 4: his table lists all supported materials that can be passed into the conductor and roughconductor
plugins. Note that some of them are not actually conductors—this is not a problem, they can be
used regardless (though only the relection component and no transmission will be simulated). In
most cases, there are multiple entries for each material, which represent measurements by diferent
authors.

62

8. Plugin reference 8.2. Surface scattering models

8.2.7. Rough conductor material (roughconductor)

Parameter Type Description

distribution string Speciies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. his is the default.

(ii) ggx: New distribution proposed by Walter et al. [47],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

(iv) as: Anisotropic Phong-style microfacet distribution
proposed by Ashikhmin and Shirley [1].

alpha float or
texture

Speciies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope
of the microfacets. his parameter is only valid when
distribution=beckmann/phong/ggx. (Default: 0.1).

alphaU, alphaV float or
texture

Speciies the anisotropic roughness values along the tangent
and bitangent directions. hese parameter are only valid
when distribution=as. (Default: 0.1).

material string Nameof amaterial preset, seeTable 4.(Default: Cu / copper)

eta, k spectrum Real and imaginary components of the material’s index of
refraction (Default: based on the value of material)

extEta float or
string

Real-valued index of refraction of the surrounding dielec-
tric, or a material name of a dielectric (Default: air)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

his plugin implements a realistic microfacet scattering model for rendering rough conducting

materials, such as metals. It can be interpreted as a fancy version of the Cook-Torrance model and

should be preferred over heuristic models like phong and ward when possible.

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular

facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting

for shadowing and masking efects between these facets, it is possible to reproduce the important of-

specular relections peaks observed in real-world measurements of such materials.

his plugin is essentially the “roughened” equivalent of the (smooth) plugin conductor. For very

low values of α, the two will be identical, though scenes using this plugin will take longer to render

63

8. Plugin reference 8.2. Surface scattering models

(a) Rough copper (Beckmann, α = 0.1) (b) Vertically brushed aluminium (Ashikhmin-Shirley,

αu = 0.05, αv = 0.3), see Listing 18

due to the additional computational burden of tracking surface roughness.

he implementation is based on the paper “Microfacet Models for Refraction through Rough Sur-

faces” by Walter et al. [47]. It supports several diferent types of microfacet distributions and has a

texturable roughness parameter. To facilitate the tedious task of specifying spectrally-varying index of

refraction information, this plugin can access a set of measured materials for which visible-spectrum

information was publicly available (see Table 4 for the full list). here is also a special material proile

named none, which disables the computation of Fresnel relectances and produces an idealized 100%

relecting mirror.

When no parameters are given, the plugin activates the default settings, which describe copper

with a light amount of roughness modeled using a Beckmann distribution.

To get an intuition about the efect of the surface roughness parameter α, consider the following

approximate classiication: a value of α ≙ 0.001− 0.01 corresponds to a material with slight imperfec-

tions on an otherwise smooth surface inish, α ≙ 0.1 is relatively rough, and α ≙ 0.3− 0.7 is extremely

rough (e.g. an etched or ground inish). Values signiicantly above that are probably not too realistic.

<bsdf type="roughconductor">

<string name="material" value="Al"/>

<string name="distribution" value="as"/>

<float name="alphaU" value="0.05"/>

<float name="alphaV" value="0.3"/>

</bsdf>

Listing 18: Amaterial deinition for brushed aluminium

Technical details

When rendering with the Ashikhmin-Shirley or Phong microfacet distributions, a conversion is used

to turn the speciied α roughness value into the exponents of these distributions. his is done in a

way, such that the diferent distributions all produce a similar appearance for the same value of α.

64

8. Plugin reference 8.2. Surface scattering models

he Ashikhmin-Shirley microfacet distribution allows the speciication of two distinct roughness

values along the tangent and bitangent directions. his can be used to provide a material with a

“brushed” appearance. he alignment of the anisotropy will follow the UV parameterization of the

underlying mesh in this case. his also means that such an anisotropic material cannot be applied to

triangle meshes that are missing texture coordinates.

When using this plugin, you should ideally compile Mitsuba with support for spectral rendering

to get the most accurate results. While it also works in RGB mode, the computations will be more

approximate in nature. Also note that this material is one-sided—that is, observed from the back side,

it will be completely black. If this is undesirable, consider using the twosided BRDF adapter.

65

...

8. Plugin reference 8.2. Surface scattering models

8.2.8. Smooth plastic material (plastic)

Parameter Type Description

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: polypropylene / 1.49)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

diffuse⤦
Reflectance

spectrum or
texture

Optional factor used tomodulate the difuse relection com-
ponent (Default: 0.5)

nonlinear boolean Account for nonlinear color shits due to internal scatter-
ing? See the main text for details. (Default: Don’t account
for them and preserve the texture colors, i.e. false)

(a) A rendering with the default parameters (b) A rendering with custom parameters (Listing 19)

his plugin describes a smooth plastic-like material with internal scattering. It uses the Fresnel

relection and transmission coeicients to provide direction-dependent specular and difuse compo-

nents. Since it is simple, realistic, and fast, this model is oten a better choice than the phong, ward,

and roughplastic plugins when rendering smooth plastic-like materials.

For convenience, this model allows to specify IOR values either numerically, or based on a list of

known materials (see Table 3 for an overview).

Note that this plugin is quite similar to what one would get by applying the coating plugin to the

diffusematerial. he main diference is that this plugin is signiicantly faster, while at the same time

causing less variance. Furthermore, it accounts for multiple interrelections inside the material (read

on for details), which avoids a serious energy loss problem of the aforementioned plugin combination.

66

8. Plugin reference 8.2. Surface scattering models

<bsdf type="plastic">

<srgb name="diffuseReflectance" value="#18455c"/>

<float name="intIOR" value="1.9"/>

</bsdf>

Listing 19: A shiny material whose difuse relectance is speciied using sRGB

(a) Difuse textured rendering (b) Plastic model, nonlinear=false (c) Plastic model, nonlinear=true

Figure 10: When asked to do so, this model can account for subtle nonlinear color shits due to internal
scattering processes. he above images show a textured object irst rendered using diffuse, then
plastic with the default parameters, and inally using plastic and support for nonlinear color
shits.

Internal scattering

Internally, this is model simulates the interaction of light with a difuse base surface coated by a thin

dielectric layer. his is a convenient abstraction rather than a restriction. In other words, there are

many materials that can be rendered with this model, even if they might not not it this description

perfectly well.

20 %

80 %

(a) At the boundary, incident illumina-

tion is partly relected and refracted

(b) he refracted portion scatters dif-

fusely at the base layer

40 %

60 %

(c) Someof the illumination undergoes

further internal scattering events

Figure 11: An illustration of the scattering events that are internally handled by this plugin

Given illumination that is incident upon such a material, a portion of the illumination is specu-

larly relected at the material boundary, which results in a sharp relection in the mirror direction

(Figure 11a). he remaining illumination refracts into the material, where it scatters from the difuse

base layer. (Figure 11b). While some of the difusely scattered illumination is able to directly refract

outwards again, the remainder is relected from the interior side of the dielectric boundary and will

in fact remain trapped inside the material for some number of internal scattering events until it is

inally able to escape (Figure 11c).

Due to the mathematical simplicity of this setup, it is possible to work out the correct form of the

model without actually having to simulate the potentially large number of internal scattering events.

67

8. Plugin reference 8.2. Surface scattering models

Note that due to the internal scattering, the difuse color of the material is in practice slightly dif-

ferent from the color of the base layer on its own—in particular, the material color will tend to shit

towards darker colors with higher saturation. Since this can be counter-intuitive when using bitmap

textures, these color shits are disabled by default. Specify the parameter nonlinear=true to enable

them. Figure 10 illustrates the resulting change. his efect is also seen in real life, for instance a piece

of wood will look slightly darker ater coating it with a layer of varnish.

68

...

8. Plugin reference 8.2. Surface scattering models

8.2.9. Rough plastic material (roughplastic)

Parameter Type Description

distribution string Speciies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. his is the default.

(ii) ggx: New distribution proposed by Walter et al. [47],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

alpha float or
texture

Speciies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope of
the microfacets. (Default: 0.1).

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: polypropylene / 1.49)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

diffuse⤦
Reflectance

spectrum or
texture

Optional factor used tomodulate the difuse relection com-
ponent (Default: 0.5)

nonlinear boolean Account for nonlinear color shits due to internal scatter-
ing? See the plastic plugin for details. (Default: Don’t ac-
count for them and preserve the texture colors, i.e. false)

his plugin implements a realistic microfacet scattering model for rendering rough dielectric ma-

terials with internal scattering, such as plastic. It can be interpreted as a fancy version of the Cook-

Torrance model and should be preferred over heuristic models like phong and ward when possible.

Microfacet theory describes rough surfaces as an arrangement of unresolved and ideally specular

facets, whose normal directions are given by a specially chosenmicrofacet distribution. By accounting

for shadowing and masking efects between these facets, it is possible to reproduce the important of-

specular relections peaks observed in real-world measurements of such materials.

his plugin is essentially the “roughened” equivalent of the (smooth) plugin plastic. For very

low values of α, the two will be identical, though scenes using this plugin will take longer to render

due to the additional computational burden of tracking surface roughness.

For convenience, this model allows to specify IOR values either numerically, or based on a list of

69

8. Plugin reference 8.2. Surface scattering models

(a) Beckmann, α = 0.1 (b) GGX, α = 0.3

known materials (see Table 3 on page 56 for an overview). When no parameters are given, the plugin

activates the defaults, which describe a white polypropylene plastic material with a light amount of

roughness modeled using the Beckmann distribution.

Like the plastic material, this model internally simulates the interaction of light with a difuse

base surface coated by a thin dielectric layer (where the coating layer is now rough). his is a con-

venient abstraction rather than a restriction. In other words, there are many materials that can be

rendered with this model, even if they might not not it this description perfectly well.

he simplicity of this setup makes it possible to account for interesting nonlinear efects due to

internal scattering, which is controlled by the nonlinear parameter. For more details, please refer

to the description of this parameter given in the the plastic plugin section on page 66.

To get an intuition about the efect of the surface roughness parameter α, consider the following

approximate classiication: a value of α ≙ 0.001− 0.01 corresponds to a material with slight imperfec-

tions on an otherwise smooth surface inish, α ≙ 0.1 is relatively rough, and α ≙ 0.3− 0.7 is extremely

rough (e.g. an etched or ground inish). Values signiicantly above that are probably not too realistic.

(a) Difuse textured rendering (b) Textured rough plastic model and

nonlinear=false

(c) Textured rough plastic model and

nonlinear=true

Figure 12: When asked to do so, this model can account for subtle nonlinear color shits due to internal scat-
tering processes. he above images show a textured object irst rendered using diffuse, then
roughplasticwith the default parameters, and inally using roughplastic and support for non-
linear color shits.

70

8. Plugin reference 8.2. Surface scattering models

(a) Wood material with smooth horizontal stripes (b) Amaterial with imperfections at a much smaller scale

than what is modeled e.g. using a bump map.

Figure 13: he ability to texture the roughness parameter makes it possible to render materials with a struc-
tured inish, as well as “smudgy” objects.

<bsdf type="roughplastic">

<string name="distribution" value="beckmann"/>

<float name="intIOR" value="1.61"/>

<spectrum name="diffuseReflectance" value="0"/>

<!-- Fetch roughness values from a texture and slightly reduce them -->

<texture type="scale" name="alpha">

<texture name="alpha" type="bitmap">

<string name="filename" value="bump.png"/>

</texture>

<float name="scale" value="0.6"/>

</texture>

</bsdf>

Listing 20: Amaterial deinition for black plastic material with a spatially varying roughness.

Technical details

he implementation of this model is partly based on the paper “Microfacet Models for Refraction

through Rough Surfaces” by Walter et al. [47]. Several diferent types of microfacet distributions are

supported. Note that the choices are slightly more restricted here—in comparison to other rough

scattering models in Mitsuba, anisotropic distributions are not allowed.

he implementation of this model makes heavy use of a rough Fresnel transmittance function,

which is a generalization of the usual Fresnel transmittion coeicient to microfacet surfaces. Unfortu-

nately, this function is normally prohibitively expensive, since each evaluation involves a numerical

integration over the sphere.

To avoid this performance issue, Mitsuba ships with data iles (contained in thedata/microfacet

directory) containing precomputed values of this function over a large range of parameter values. At

runtime, the relevant parts are extracted using tricubic interpolation.

When rendering with the Phong microfacet distributions, a conversion is used to turn the speciied

α roughness value into the Phong exponent. his is done in a way, such that the diferent distributions

all produce a similar appearance for the same value of α.

71

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.10. Smooth dielectric coating (coating)

Parameter Type Description

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

thickness float Denotes the thickness of the layer (to model absorption —
should be speciied in inverse units of sigmaA) (Default: 1)

sigmaA spectrum or
texture

he absorption coeicient of the coating layer. (Default: 0,
i.e. there is no absorption)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

(Nested plugin) bsdf A nested BSDF model that should be coated.

(a) Rough copper (b) he same material coated with a single layer of clear

varnish (see Listing 21)

his plugin implements a smooth dielectric coating (e.g. a layer of varnish) in the style of the

paper “Arbitrarily Layered Micro-Facet Surfaces” by Weidlich and Wilkie [51]. Any BSDF in Mitsuba

can be coated using this plugin, and multiple coating layers can even be applied in sequence. his

allows designing interesting custom materials like car paint or glazed metal foil. he coating layer can

optionally be tinted (i.e. illed with an absorbing medium), in which case this model also accounts

for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal relection within the coating.

his can lead to a noticeable energy loss for materials that relect much of their energy near or below

the critical angle (i.e. difuse or very rough materials). herefore, users are discouraged to use this

plugin to coat smooth difuse materials, since there is a separately available plugin named plastic,

which covers the same case and does not sufer from energy loss.

72

8. Plugin reference 8.2. Surface scattering models

(a) thickness = 0 (b) thickness = 1 (c) thickness = 5 (d) thickness = 15

Figure 14: he efect of the layer thickness parameter on a tinted coating (sigmaT ≙ (0.1, 0.2, 0.5))

<bsdf type="coating">

<float name="intIOR" value="1.7"/>

<bsdf type="roughconductor">

<string name="material" value="Cu"/>

<float name="alpha" value="0.1"/>

</bsdf>

</bsdf>

Listing 21: Rough copper coated with a transparent layer of varnish

(a) Coated rough copper with a bumpmap applied on top (b) Bump mapped rough copper with a coating on top

Figure 15: Some interesting materials can be created simply by applyingMitsuba’s material modiiers in difer-
ent orders.

Technical details

Evaluating the internal component of this model entails refracting the incident and exitant rays

through the dielectric interface, followed by querying the nested material with this modiied direction

pair. he result is attenuated by the two Fresnel transmittances and the absorption, if any.

73

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.11. Rough dielectric coating (roughcoating)

Parameter Type Description

distribution string Speciies the type of microfacet normal distribution used to
model the surface roughness.

(i) beckmann: Physically-based distribution derived
from Gaussian random surfaces. his is the default.

(ii) ggx: New distribution proposed by Walter et al. [47],
which ismeant to better handle the long tails observed
inmeasurements of ground surfaces. Renderingswith
this distribution may converge slowly.

(iii) phong: Classical cosp θ distribution. Due to the un-
derlyingmicrofacet theory, the use of this distribution
here leads to more realistic behavior than the sepa-
rately available phong plugin.

alpha float or
texture

Speciies the roughness of the unresolved surface micro-
geometry. When the Beckmann distribution is used, this
parameter is equal to the root mean square (RMS) slope of
the microfacets. (Default: 0.1).

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: bk7 / 1.5046)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: air / 1.000277)

thickness float Denotes the thickness of the layer (to model absorption —
should be speciied in inverse units of sigmaA) (Default: 1)

sigmaA spectrum or
texture

he absorption coeicient of the coating layer. (Default: 0,
i.e. there is no absorption)

specular⤦
Reflectance

spectrum or
texture

Optional factor that can be used to modulate the specular
relection component. Note that for physical realism, this
parameter should never be touched. (Default: 1.0)

(Nested plugin) bsdf A nested BSDF model that should be coated.

his plugin implements a very approximate12 model that simulates a rough dielectric coating. It

is essentially the roughened version of coating. Any BSDF in Mitsuba can be coated using this

plugin and multiple coating layers can even be applied in sequence, which allows designing interesting

custom materials. he coating layer can optionally be tinted (i.e. illed with an absorbing medium),

in which case this model also accounts for the directionally dependent absorption within the layer.

Note that the plugin discards illumination that undergoes internal relection within the coating.

his can lead to a noticeable energy loss for materials that relect much of their energy near or below

12 hemodel only accounts for roughness in the specular relection and Fresnel transmittance through the interface. he

interior model receives incident illumination that is transformed as if the coating was smooth. While that’s not quite

correct, it is a convenient workaround when the coating plugin produces specular highlights that are too sharp.

74

8. Plugin reference 8.2. Surface scattering models

(a) Rough gold coated with a smooth varnish layer (b) Rough gold coatedwith a rough (α=0.03) varnish layer

the critical angle (i.e. difuse or very rough materials).

he implementation here is inluenced by the paper “Arbitrarily Layered Micro-Facet Surfaces” by

Weidlich and Wilkie [51].

75

?

?

?

8. Plugin reference 8.2. Surface scattering models

8.2.12. Bump map modiier (bump)

Parameter Type Description

(Nested plugin) texture he luminance of this texture speciies the amount of
displacement. he implementation ignores any constant
ofset—only changes in the luminance matter.

(Nested plugin) bsdf A BSDF model that should be afected by the bump map

(a) Bump map based on tileable diagonal lines (b) An irregular bump map

Bump mapping [3] is a simple technique for cheaply adding surface detail to a rendering. his is

done by perturbing the shading coordinate frame based on a displacement height ield provided as

a texture. his method can lend objects a highly realistic and detailed appearance (e.g. wrinkled or

covered by scratches and other imperfections) without requiring any changes to the input geometry.

he implementation in Mitsuba uses the common approach of ignoring the usually negligible

texture-space derivative of the base mesh surface normal. As side efect of this decision, it is invariant

to constant ofsets in the height ield texture—only variations in its luminance cause changes to the

shading frame.

Note that the magnitude of the height ield variations inluences the strength of the displacement. If

desired, the scale texture plugin can be used to magnify or reduce the efect of a bump map texture.

<bsdf type="bump">

<!-- The bump map is applied to a rough metal BRDF -->

<bsdf type="roughconductor"/>

<texture type="scale">

<!-- The scale of the displacement gets multiplied by 10x -->

<float name="scale" value="10"/>

<texture type="bitmap">

<string name="filename" value="bumpmap.png"/>

</texture>

</texture>

</bsdf>

Listing 22: A rough metal model with a scaled image-based bump map

76

8. Plugin reference 8.2. Surface scattering models

8.2.13. Modiied Phong BRDF (phong)

Parameter Type Description

exponent float or
texture

Speciies the Phong exponent (Default: 30).

specular⤦
Reflectance

spectrum or
texture

Speciies the weight of the specular relectance component.
(Default: 0.2)

diffuse⤦
Reflectance

spectrum or
texture

Speciies the weight of the difuse relectance component
(Default: 0.5)

(a) Exponent= 60 (b) Exponent= 300

his plugin implements the modiied Phong relectance model as described in [37] and [30]. his

heuristic model is mainly included for historical reasons—its use in new scenes is discouraged, since

signiicantly more realistic models have been developed since 1975.

If possible, it is recommended to switch to a BRDF that is based on microfacet theory and includes

knowledge about the material’s index of refraction. In Mitsuba, two good alternatives to phong are

the plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the difuse and specular relectance components should add up

to a value less than or equal to one (for each color channel). Otherwise, they will automatically be

scaled appropriately to ensure energy conservation.

77

8. Plugin reference 8.2. Surface scattering models

8.2.14. Anisotropic Ward BRDF (ward)

Parameter Type Description

variant string Determines the variant of the Ward model to use:

(i) ward: he original model by Ward [49] — sufers
from energy loss at grazing angles.

(ii) ward-duer: Corrected Ward model with lower en-
ergy loss at grazing angles [7]. Does not always con-
serve energy.

(iii) balanced: Improved version of the ward-duer
model with energy balance at all angles [11].

Default: balanced

alphaU, alphaV float or
texture

Speciies the anisotropic roughness values along the tangent
and bitangent directions. (Default: 0.1).

specular⤦
Reflectance

spectrum or
texture

Speciies the weight of the specular relectance component.
(Default: 0.2)

diffuse⤦
Reflectance

spectrum or
texture

Speciies the weight of the difuse relectance component
(Default: 0.5)

(a) αu = 0.1, αv = 0.3 (b) αu = 0.3, αv = 0.1

his plugin implements the anisotropic Ward relectance model and several extensions. hey are

described in the papers

(i) “Measuring and Modeling Anisotropic Relection” by Greg Ward [49]

(ii) “Notes on the Ward BRDF” by Bruce Walter [46]

(iii) “An Improved Normalization for the Ward Relectance Model” by Arne Dür [7]

(iv) “A New Ward BRDF Model with Bounded Albedo” by Geisler-Moroder et al. [11]

Like the Phong BRDF, the Ward model does not take the Fresnel relectance of the material into

account. In an experimental study by Ngan et al. [34], the Ward model performed noticeably worse

than models based on microfacet theory.

78

8. Plugin reference 8.2. Surface scattering models

For this reason, it is usually preferable to switch to a microfacet model that incorporates knowledge

about the material’s index of refraction. In Mitsuba, two such alternatives to ward are given by the

plugins roughconductor and roughplastic (depending on the material type).

When using this plugin, note that the difuse and specular relectance components should add up

to a value less than or equal to one (for each color channel). Otherwise, they will automatically be

scaled appropriately to ensure energy conservation.

79

8. Plugin reference 8.2. Surface scattering models

8.2.15. Mixture material (mixturebsdf)

Parameter Type Description

weights string A comma-separated list of BSDF weights

(Nested plugin) bsdf Multiple BSDF instances that should be mixed according to
the speciied weights

(a) Smooth glass (b) Rough glass (c) An mixture of 70% smooth glass

and 30% rough glass results in

a more realistic smooth material

with imperfections (Listing 23)

his plugin implements a “mixture” material, which represents linear combinations of multiple

BSDF instances. Any surface scattering model in Mitsuba (be it smooth, rough, relecting, or trans-

mitting) can be mixed with others in this manner to synthesize new models. here is no limit on how

many models can be mixed, but their combination weights must be non-negative and sum to a value

of one or less to ensure energy balance. When they sum to less than one, the material will absorb a

proportional amount of the incident illlumination.

<bsdf type="mixturebsdf">

<string name="weights" value="0.7, 0.3"/>

<bsdf type="dielectric"/>

<bsdf type="roughroughdielectric">

<float name="alpha" value="0.3"/>

</bsdf>

</bsdf>

Listing 23: Amaterial deinition for a mixture of 70% smooth and 30% rough glass

80

8. Plugin reference 8.2. Surface scattering models

8.2.16. Blended material (blendbsdf)

Parameter Type Description

weight float or
texture

A loating point value or texture with values between zero
and one. he extreme values zero and one activate the irst
and second nested BSDF respectively, and inbetween values
interpolate accordingly. (Default: 0.5)

(Nested plugin) bsdf Two nested BSDF instances that should bemixed according
to the speciied blending weight

(a) A material created by blending between dark rough

plastic and smooth gold based on a binary bitmap tex-

ture (Listing 24)

his plugin implements a “blend” material, which represents linear combinations of two BSDF

instances. It is conceptually very similar to the mixturebsdf plugin. he main diference is that

blendbsdf can interpolate based on a texture rather than a set of constants.

Any surface scattering model in Mitsuba (be it smooth, rough, relecting, or transmitting) can be

mixed with others in this manner to synthesize new models.

<bsdf type="blendbsdf">

<texture name="weight" type="bitmap">

<string name="wrapMode" value="repeat"/>

<string name="filename" value="pattern.png"/>

</texture>

<bsdf type="conductor">

<string name="material" value="Au"/>

</bsdf>

<bsdf type="roughplastic">

<spectrum name="diffuseReflectance" value="0"/>

</bsdf>

</bsdf>

Listing 24: Description of the material shown above

81

8. Plugin reference 8.2. Surface scattering models

8.2.17. Opacity mask (mask)

Parameter Type Description

opacity spectrum or
texture

Speciies the per-channel opacity (where 1 ≙ completely
opaque) (Default: 0.5).

(Nested plugin) bsdf A base BSDF model that represents the non-transparent
portion of the scattering

(a) Rendering without an opacity mask (b) Rendering with an opacity mask (Listing 25)

his plugin applies an opacity mask to add nested BSDF instance. It interpolates between perfectly

transparent and completely opaque based on the opacity parameter.

he transparency is internally implemented as a forward-facing Dirac delta distribution. Note that

the standard path tracer does not have a good sampling strategy to deal with this, but the volumetric

path tracer (volpath) does. It may thus be preferable when rendering scenes that contain the mask

plugin, even if there is nothing “volumetric” in the scene.

<bsdf type="mask">

<!-- Base material: a two-sided textured diffuse BSDF -->

<bsdf type="twosided">

<bsdf type="diffuse">

<texture name="reflectance" type="bitmap">

<string name="filename" value="leaf.jpg"/>

</texture>

</bsdf>

</bsdf>

<!-- Fetch the opacity mask from a bitmap -->

<texture name="opacity" type="bitmap">

<string name="filename" value="leaf_opacity.jpg"/>

<float name="gamma" value="1"/>

</texture>

</bsdf>

Listing 25: Material coniguration for a transparent leaf

82

8. Plugin reference 8.2. Surface scattering models

8.2.18. Two-sided BRDF adapter (twosided)

Parameter Type Description

(Nested plugin) bsdf A nested BRDF that should be turned into a two-sided scat-
teringmodel. If twoBRDFs are speciied, theywill be placed
on the front and back side, respectively.

(a) From this angle, the Cornell box scene shows visible

back-facing geometry

(b) Applying the twosided plugin ixes the rendering

By default, all non-transmissive scattering models in Mitsuba are one-sided — in other words, they

absorb all light that is received on the interior-facing side of any associated surfaces. Holes and visible

back-facing parts are thus exposed as black regions.

Usually, this is a good idea, since it will reveal modeling issues early on. But sometimes one is

forced to deal with improperly closed geometry, where the one-sided behavior is bothersome. In that

case, this plugin can be used to turn one-sided scattering models into proper two-sided versions of

themselves. he plugin has no parameters other than a required nested BSDF speciication. It is also

possible to supply two diferent BRDFs that should be placed on the front and back side, respectively.

<bsdf type="twosided">

<bsdf type="diffuse">

<spectrum name="reflectance" value="0.4"/>

</bsdf>

</bsdf>

Listing 26: A two-sided difuse material

83

8. Plugin reference 8.2. Surface scattering models

8.2.19. Irawan & Marschner woven cloth BRDF (irawan)

Parameter Type Description

filename string Path to a weave pattern description

repeatU, repeatV float Speciies the number of weave pattern repetitions over a
[0, 1]2 region of the UV parameterization

(Additional

parameters)

spectrum or
float

Weave pattern iles may deine their own custom parame-
ters; this is useful for instance to support changing the color
of a weave without having to create a new ile every time.
hese parameters must be speciied directly to the plugin
so that they can be appropriately resolved when the pattern
ile is loaded.

his plugin implements the Irawan & Marschner BRDF, a realistic model for rendering woven

materials. his spatially-varying relectance model uses an explicit description of the underlying

weave pattern to create ine-scale texture and realistic relections across a wide range of diferent

weave types. To use the model, you must provide a special weave pattern ile—for an example of what

these look like, see the examples scenes available on the Mitsuba website.

A detailed explanation of the model is beyond the scope of this manual. For reference, it is de-

scribed in detail in the PhD thesis of Piti Irawan (“he Appearance of Woven Cloth” [17]). he code

in Mitsuba a modiied port of a previous Java implementation by Piti, which has been extended with

a simple domain-speciic weave pattern description language.

(a) Silk charmeuse (b) Cotton denim (c) Wool gabardine

(d) Polyester lining cloth (e) Silk shantung (f) Cotton twill

84

8. Plugin reference 8.2. Surface scattering models

8.2.20. Hanrahan-Krueger BSDF (hk)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaS spectrum or
texture

Speciies the scattering coeicient of the internal layer. (De-
fault: based on material)

sigmaA spectrum or
texture

Speciies the absorption coeicient of the internal layer.
(Default: based on material)

sigmaT & albedo spectrum or
texture

Optional: Alternatively, the scattering and absorption coef-
icientsmay also be speciied using the extinction coeicient
sigmaT and the single-scattering albedo. Note that only one
of the parameter passing conventions can be used at a time
(i.e. use either sigmaS&sigmaA or sigmaT&albedo)

thickness float Denotes the thickness of the layer. (should be speciied in
inverse units of sigmaA and sigmaS) (Default: 1)

(Nested plugin) phase A nested phase function instance that represents the type of
scattering interactions occurring within the layer

(a) An index-matched scattering layer with parameters

σs = 2, σa = 0.1, thickness= 0.1

(b) Example of the HK model with a dielectric coating

(and the ketchupmaterial preset, see Listing 27)

Figure 16: Renderings using the uncoated and coated form of the Hanrahan-Krueger model.

his plugin provides an implementation of the Hanrahan-Krueger BSDF [15] for simulating single

scattering in thin index-matched layers illed with a random scattering medium. In addition, the im-

plementation also accounts for attenuated light that passes through the medium without undergoing

any scattering events.

his BSDF requires a phase function to model scattering interactions within the random medium.

When no phase function is explicitly speciied, it uses an isotropic one (g ≙ 0) by default. A sample

usage for instantiating the plugin is given on the next page:

85

8. Plugin reference 8.2. Surface scattering models

<bsdf type="hk">

<spectrum name="sigmaS" value="2"/>

<spectrum name="sigmaA" value="0.1"/>

<float name="thickness" value="0.1"/>

<phase type="hg">

<float name="g" value="0.8"/>

</phase>

</bsdf>

When used in conjuction with the coating plugin, it is possible to model refraction and relection

at the layer boundaries when the indices of refraction are mismatched. he combination of these two

plugins then reproduces the full model as it was originally proposed by Hanrahan and Krueger [15].

Note that this model does not account for light that undergoes multiple scattering events within

the layer. his leads to energy loss, particularly at grazing angles, which can be seen in the let-hand

image of Figure 16.

<bsdf type="coating">

<float name="extIOR" value="1.0"/>

<float name="intIOR" value="1.5"/>

<bsdf type="hk">

<string name="material" value="ketchup"/>

<float name="thickness" value="0.01"/>

</bsdf>

</bsdf>

Listing 27: A thin dielectric layer with measured ketchup scattering parameters

Note that when sigmaS = sigmaA ≙ 0, or when thickness=0, any geometry associated with this

BSDF becomes invisible, as light will pass through unchanged.

he implementation in Mitsuba is based on code by Tom Kazimiers and Marios Papas. Marios

Papas has kindly veriied the implementation of the coated and uncoated variants against both a path

tracer and a separate reference implementation.

86

8. Plugin reference 8.2. Surface scattering models

8.2.21. Difuse transmitter (difftrans)

Parameter Type Description

transmittance spectrum or
texture

Speciies the difuse transmittance of the material (Default:
0.5)

(a) hemodel with default parameters

his BSDF models a non-relective material, where any entering light loses its directionality and is

difusely scattered from the other side. his model can be combined13 with a surface relection model

to describe translucent substances that have internal multiple scattering processes (e.g. plant leaves).

13For instance using the mixturebsdf plugin.

87

8. Plugin reference 8.3. Textures

8.3. Textures

he following section describes the available texture data sources. In Mitsuba, textures are objects

that can be attached to certain surface scattering model parameters to introduce spatial variation.

In the documentation, these are listed as supporting the “texture” type. See Section 8.2 for many

examples.

88

8. Plugin reference 8.3. Textures

8.3.1. Bitmap texture (bitmap)

Parameter Type Description

filename string Filename of the bitmap to be loaded

wrapMode,

wrapModeU,

wrapModeV

string Behavior of texture lookups outside of the [0, 1] uv range.

(i) repeat: Repeat the texture indeinitely

(ii) mirror: Mirror the texture along its boundaries

(iii) clamp: Clamp uv coordinates to [0, 1] before a lookup

(iv) zero: Switch to a zero-valued texture

(v) one: Switch to a one-valued texture

Default: repeat. he parameter wrapMode is a shortcut for
setting both wrapModeU and wrapModeV at the same time.

gamma float Optional parameter to override the gamma value of the
source bitmap, where 1 indicates a linear color space and
the special value -1 corresponds to sRGB. (Default: auto-
matically detect based on the image type and metadata)

filterType string Speciies the texture ilturing that should be used for
lookups

(i) ewa: Elliptically weighted average (a.k.a. anisotropic
iltering). his produces the best quality

(ii) trilinear: Simple trilinear (isotropic) iltering.

(iii) nearest: No iltering, do nearest neighbor lookups.

Default: ewa.

maxAnisotropy float Speciic to ewa iltering, this parameter limits the
anisotropy (and thus the computational cost) of iltured
texture lookups. he default of 20 is a good compromise.

cache boolean Preserve generated MIP map data in a cache ile? his will
cause a ile named ilename.mip to be created. (Default:
automatic—use caching for textures larger than 1M pixels.)

uoffset, voffset float Numerical ofset that should be applied to UV values before
a lookup

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

his plugin provides a bitmap-backed texture source that supports iltered texture lookups on14

JPEG, PNG, OpenEXR, RGBE, TGA, and BMP iles. Filtered lookups are useful to avoid aliasing

when rendering textures that contain high frequencies (see the next page for an example).

he plugin operates as follows: when loading a bitmap ile, it is irst converted into a linear color

space. Following this, a MIP map is constructed that is necessary to perform iltered lookups during

rendering. A MIP map is a hierarchy of progressively lower resolution versions of the input image,

where the resolution of adjacent levels difers by a factor of two. Mitsuba creates this hierarchy using

Lanczos resampling to obtain very high quality results. Note that textures may have an arbitrary

14Some of these may not be available depending on how Mitsuba was compiled.

89

8. Plugin reference 8.3. Textures

resolution and are not limited to powers of two. hree diferent iltering modes are supported:

(i) Nearest neighbor lookups efectively disable iltering and always query the highest-resolution

version of the texture without any kind of interpolation. his is fast and requires little memory

(no MIP map is created), but results in visible aliasing. Only a single pixel value is accessed.

(ii) he trilinear ilter performs bilinear interpolation on two adjacent MIP levels and blends the

results. Because it cannot do anisotropic (i.e. slanted) lookups in texture space, it must compro-

mise either on the side of blurring or aliasing. he implementation in Mitsuba chooses blurring

over aliasing (though note that (b) is an extreme case). Only 8 pixel values are accessed.

(iii) he EWA ilter performs anisotropicically iltered lookups on two adjacent MIP map levels and

blends them. his produces the best quality, but at the expense of computation time. Generally,

20-40 pixel values must be read for a single EWA texture lookup. To limit the number of pixel

accesses, the maxAnisotropy parameter can be used to bound the amount of anisotropy that

a texture lookup is allowed to have.

(a) Nearest-neighbor ilter. Note the aliasing (b) Trilinear ilter. Note the blurring

(c) EWA ilter (d) Ground truth (512 samples per pixel)

Figure 17: A somewhat contrived comparison of the diferent ilters when rendering a high-frequency checker-
board pattern using four samples per pixel. he EWA method (the default) pre-ilters the texture
anisotropically to limit blurring and aliasing, but has a higher computational cost than the other
ilters.

Caching and memory requirements: When a texture is read, Mitsuba internally converts it into

an uncompressed linear format using a half precision (float16)-based representation. his is con-

venient for rendering but means that textures require copious amounts of memory (in particular, the

90

8. Plugin reference 8.3. Textures

size of the occupied memory region might be orders of magnitude greater than that of the original

input ile).

For instance, a basic 10 megapixel image requires as much as 76 MiB of memory! Loading, color

space transformation, and MIP map construction require up to several seconds in this case. To reduce

these overheads, Mitsuba 0.4.0 introduced MIP map caches. When a large texture is loaded for the

irst time, a MIP map cache ile with the nameilename.mip is generated. his is essentially a verbatim

copy of the in-memory representation created during normal rendering. Storing this information as

a separate ile has two advantages:

(i) MIP maps do not have to be regenerated in subsequent Mitsuba runs, which substantially re-

duces scene loading times.

(ii) Because the texture storage is entirely disk-backed and can be memory-mapped, Mitsuba is able

to work with truly massive textures that would otherwise exhaust the main system memory.

he texture caches are automatically regenerated when the input texture is modiied. Of course,

the cache iles can be cumbersome when they are not needed anymore. On Linux or Mac OS, they

can safely be deleted by executing the following command within a scene directory.

$ find . -name "*.mip" -delete

91

8. Plugin reference 8.3. Textures

8.3.2. Checkerboard (checkerboard)

Parameter Type Description

color0, color1 spectrum Color values for the two diferently-colored patches (De-
fault: 0.4 and 0.2)

uoffset, voffset float Numerical ofset that should be applied to UV values before
a lookup

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

(a) Checkerboard applied to thematerial test object aswell

as the ground plane

his plugin implements a simple procedural checkerboard texture with customizable colors.

92

8. Plugin reference 8.3. Textures

8.3.3. Procedural grid texture (gridtexture)

Parameter Type Description

color0 spectrum Color values of the background (Default: 0.2)

color1 spectrum Color value of the lines (Default: 0.4)

lineWidth float Width of the grid lines in UV space (Default: 0.01)

uscale, vscale float Multiplicative factors that should be applied to UV values
before a lookup

uoffset, voffset float Numerical ofset that should be applied to UV values before
a lookup

(a) Grid texture applied to the material test object

his plugin implements a simple procedural grid texture with customizable colors and line width.

93

8. Plugin reference 8.3. Textures

8.3.4. Scaling passthrough texture (scale)

Parameter Type Description

value spectrum or
texture

Speciies the spectrum or nested texture that should be
scaled

value float Speciies the scale value

his simple plugin wraps a nested texture plugin and multiplies its contents by a user-speciied

value. his can be quite useful when a texture is too dark or too bright. he plugin can also be used

to adjust the height of a bump map when using the bump plugin.

<texture type="scale">

<float name="scale" value="0.5"/>

<texture type="bitmap">

<string name="filename" value="wood.jpg"/>

</texture>

</texture>

Listing 28: Scaling the contents of a bitmap texture

94

8. Plugin reference 8.3. Textures

8.3.5. Vertex color passthrough texture (vertexcolors)

When rendering with a mesh that contains vertex colors, this plugin exposes the underlying color

data as a texture. Currently, this is only supported by the PLY ile format loader.

Here is an example:

<shape type="ply">

<string name="filename" value="mesh.ply"/>

<bsdf type="diffuse">

<texture type="vertexcolors" name="reflectance"/>

</bsdf>

</shape>

Listing 29: Rendering a PLY ile with vertex colors

95

8. Plugin reference 8.3. Textures

8.3.6. Wireframe texture (wireframe)

Parameter Type Description

interiorColor spectrum Color value of the interior of triangles (Default: 0.5)

edgeColor spectrum Edge color value (Default: 0.1)

lineWidth float World-space width of the mesh edges (Default: automatic)

stepWidth float Controls the width of of step function used for the color
transition. It is speciied as a value between zero and one
(relative to the lineWidth parameter) (Default: 0.5)

(a) Wireframe texture applied to the material test object

his plugin implements a simple two-color wireframe texture map that reveals the structure of a

triangular mesh.

96

8. Plugin reference 8.3. Textures

8.3.7. Curvature texture (curvature)

Parameter Type Description

curvature string Speciies what should be shown – must be equal to mean or
gaussian.

scale float A scale factor to bring curvature values into the displayable
range [-1, 1]. Everything outside of this range will be
clamped.

(a) Mean curvature (b) Gaussian curvature

his texture can visualize the mean and Gaussian curvature of the underlying shape for inspection.

Red and blue denote positive and negative values, respectively.

97

8. Plugin reference 8.4. Subsurface scattering models

8.4. Subsurface scattering models

here are two ways of simulating subsurface scattering within Mitsuba: participating media and sub-

surface scattering models.

Subsurface scattering models: Described in this section. hese can be thought of as a irst-order ap-

proximation of what happens inside a participating medium. hey are preferable when visually

appealing output should be generated quickly and the demands on accuracy are secondary. At

the moment, there is only one subsurface scattering model (the dipole), which is described

on the next page.

Participating media: Described in Section 8.5. When modeling subsurface scattering using a par-

ticipating medium, Mitsuba performs a full radiative transport simulation, which correctly

accounts for all scattering events. his is more accurate but generally signiicantly slower.

98

8. Plugin reference 8.4. Subsurface scattering models

8.4.1. Dipole-based subsurface scattering model (dipole)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaA, sigmaS spectrum Absorption and scattering coeicients of the medium in in-
verse scene units. hese parameters are mutually exclusive
with sigmaT and albedo (Default: conigured based on
material)

sigmaT, albedo spectrum Extinction coeicient in inverse scene units and a (unit-
less) single-scattering albedo. hese parameters are mutu-
ally exclusive with sigmaA and sigmaS (Default: conig-
ured based on material)

scale float Optional scale factor that will be applied to the sigma* pa-
rameters. It is provided for convenience when accomodat-
ing data based on diferent units, or to simply tweak the den-
sity of the medium. (Default: 1)

intIOR float or
string

Interior index of refraction speciied numerically or using a
known material name. (Default: based on material)

extIOR float or
string

Exterior index of refraction speciied numerically or using
a known material name. (Default: based on material)

irrSamples integer Number of samples to use when estimating the irradiance
at a point on the surface (Default: 16)

(a) hematerial test ball rendered with the skimmilkma-

terial preset

(b) he material test ball rendered with the skin1 mate-

rial preset

his plugin implements the classic dipole subsurface scattering model from radiative transport

and medical physics [8, 9] in the form proposed by Jensen et al. [23]. It relies on the assumption

that light entering a material will undergo many (i.e. hundreds) of internal scattering events, such

that difusion theory becomes applicable. In this case15 a simple analytic solution of the subsurface

scattering proile is available that enables simulating this efect without having to account for the vast

15and atermaking several fairly strong simpliications: the geometry is assumed to be a planar half-space, and the internal

scattering from the material boundary is only considered approximately.

99

8. Plugin reference 8.4. Subsurface scattering models

(a) scale=1 (b) scale=0.2

Figure 18: he dragon model rendered with the skin2 material preset (model courtesy of XYZ RGB). he
scale parameter is useful to communicate the relative size of an object to the viewer.

numbers of internal scattering events individually.

For each dipole instance in the scene, the plugin adds a pre-process pass to the rendering that

computes the irradiance on a large set of sample positions spread uniformly over the surface in ques-

tion. he locations of these points are chosen using a technique by Bowers et al. [4] that creates

particularly well-distributed (blue noise) samples. Later during rendering, these illumination sam-

ples are convolved with the difusion proile using a fast hierarchical technique proposed by Jensen

and Buhler [22].

here are several diferent ways of coniguring the medium properties. Either, a material preset

can be loaded using the material parameter—see Table 5 for details. Alternatively, when specifying

parameters by hand, they can either be provided using the scattering and absorption coeicients, or

by declaring the extinction coeicient and single scattering albedo (whichever is more convenient).

Mixing these parameter initialization methods is not allowed.

All scattering parameters (named sigma*) should be provided in inverse scene units. For instance,

when a world-space distance of 1 unit corresponds to a meter, the scattering coeicents must be in

units of inverse meters. For convenience, the scale parameter can be used to correct this. For in-

stance, when the scene is in meters and the coeicients are in inverse millimeters, set scale=1000.

Note that a subsurface integrator can be associated with an id and shared by several shapes using

the reference mechanism introduced in Section 6. his can be useful when an object is made up of

many separate sub-shapes.

Typical material setup

To create a realistic material with subsurface scattering, it is necessary to associate the underlying

shape with an appropriately conigured surface and subsurface scattering model. Both should be

aware of the material’s index of refraction.

Because the dipole plugin is responsible for all internal scattering, the surface scattering model

should only account for specular relection due to the index of refraction change. here are two

models in Mitsuba that can do this: plastic and roughplastic (for smooth and rough interfaces,

respectively). An example is given on the next page.

100

8. Plugin reference 8.4. Subsurface scattering models

(a) Rendered using dipole (b) Rendered using homogeneous (c) irrSamples set too low

Figure 19: Two problem cases that may occur when rendering with the dipole: (a)-(b): hese two renderings
show a glass ball illed with diluted milk rendered using difusion theory and radiative transport,
respectively. he former produces an incorrect result, since the assumption of many scattering
events breaks down. (c): When the number of irradiance samples is too low when rendering with
the dipole model, the resulting noise becomes visible as “blotchy” artifacts in the rendering.

<shape type="...">

<subsurface type="dipole">

<string name="intIOR" value="water"/>

<string name="extIOR" value="air"/>

<rgb name="sigmaS" value="87.2, 127.2, 143.2"/>

<rgb name="sigmaA" value="1.04, 5.6, 11.6"/>

<integer name="irrSamples" value="64"/>

</subsurface>

<bsdf type="plastic">

<string name="intIOR" value="water"/>

<string name="extIOR" value="air"/>

<!-- Note: the diffuse component must be disabled! -->

<spectrum name="diffuseReflectance" value="0"/>

</bsdf>

<shape>

Remarks:

• his plugin only implements the multiple scattering component of the dipole model, i.e. single
scattering is omitted. Furthermore, the numerous assumptions built into the underlying theory
can cause severe inaccuracies.

For this reason, this plugin is the right choice for making pictures that “look nice”, but it should
be avoided when the output must hold up to real-world measurements. In this case, please use
participating media (Section 8.5).

• It is quite important that the sigma* parameters have the right units. For instance: if the sigmaT
parameter is accidentally set to a value that is too small by a factor of 1000, the pluginwill attempt to
create one million times as many irradiance samples, which will likely cause the rendering process
to crash with an “out of memory” failure.

101

8. Plugin reference 8.5. Participating media

8.5. Participating media

(a) A knitted sheep sweater (Ridged Feather pattern) (b) A knitted sweater for an alien charac-

ter (Braid Cables pattern)

Figure 20: Participatingmedia are not limited to smoke or fog: they are also great for rendering fuzzymaterials
such as these knitted sweaters (made using the heterogeneous and microflake plugins). Figure
courtesy of Yuksel et al. [52], models courtesy of Rune Spaans and Christer Sveen.

In Mitsuba, participating media are used to simulate materials ranging from fog, smoke, and clouds,

over translucent materials such as skin or milk, to “fuzzy” structured substances such as woven or

knitted cloth.

his section describes the two available types of media (homogeneous and heterogeneous). In

pratice, these will be combined with a phase function, which are described in Section 8.6. Partici-

pating media are usually also attached to shapes in the scene. How this is done is described at the

beginning of Section 8.1 on page 32.

When a medium permeates a volume of space (e.g. fog) that includes sensors or emitters, it is

important to assign the medium to them. his can be done using the referencing mechanism:

<medium type="homogeneous" id="fog">

<!-- homogeneous medium parameters -->

</medium>

<sensor type="perspective">

<!-- perspective camera parameters -->

<!-- Reference the fog medium from within the sensor declaration

to make it aware that it is embedded inside this medium -->

<ref id="fog"/>

</sensor>

102

8. Plugin reference 8.5. Participating media

8.5.1. Homogeneous participating medium (homogeneous)

Parameter Type Description

material string Name of a material preset, see Table 5. (Default: skin1)

sigmaA, sigmaS spectrum Absorption and scattering coeicients of the medium in in-
verse scene units. hese parameters are mutually exclusive
with sigmaT and albedo (Default: conigured based on
material)

sigmaT, albedo spectrum Extinction coeicient in inverse scene units and a (unit-
less) single-scattering albedo. hese parameters are mutu-
ally exclusive with sigmaA and sigmaS (Default: conig-
ured based on material)

scale float Optional scale factor that will be applied to the sigma* pa-
rameters. It is provided for convenience when accomodat-
ing data based on diferent units, or to simply tweak the den-
sity of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-
tering properties of the medium. When none is speci-
ied, the renderer will automatically use an instance of
isotropic.

his class implements a lexible homogeneous participating medium with support for arbitrary

phase functions and various medium sampling methods. It provides several ways of coniguring

the medium properties. Either, a material preset can be loaded using the material parameter—see

Table 5 for details. Alternatively, when specifying parameters by hand, they can either be provided

using the scattering and absorption coeicients, or by declaring the extinction coeicient and single

scattering albedo (whichever is more convenient). Mixing these parameter initialization methods is

not allowed.

All scattering parameters (named sigma*) should be provided in inverse scene units. For instance,

when a world-space distance of 1 unit corresponds to a meter, the scattering coeicents should have

units of inverse meters. For convenience, the scale parameter can be used to correct the units. For

instance, when the scene is in meters and the coeicients are in inverse millimeters, set scale to

1000.

<medium id="myMedium" type="homogeneous">

<spectrum name="sigmaS" value="1"/>

<spectrum name="sigmaA" value="0.05"/>

<phase type="hg">

<float name="g" value="0.7"/>

</phase>

</medium>

Listing 30: Declaration of a forward scattering medium with high albedo

Note: Rendering media that have a spectrally varying extinction coeicient can be tricky, since all

commonly used medium sampling methods sufer from high variance in that case. Here, it may oten

make more sense to render several monochromatic images separately (using only the coeicients for

103

8. Plugin reference 8.5. Participating media

(a) A squishy ball rendered with subsurface scattering and

a dielectric BSDF (courtesy of Chanxi Zheng)

a single channel) and then merge them back into a RGB image. here is a mtsutil (Section 5.4)

plugin named joinrgb that will perform this RGB merging process.

Name Name Name

Apple Chicken1 Chicken2

Cream Ketchup Potato

Skimmilk Skin1 Skin2

Spectralon Wholemilk

Lowfat Milk Gatorade White Grapefruit Juice

Reduced Milk Chardonnay Shampoo

Regular Milk White Zinfandel Strawberry Shampoo

Espresso Merlot Head & Shoulders Shampoo

Mint Mocha Coffee Budweiser Beer Lemon Tea Powder

Lowfat Soy Milk Coors Light Beer Orange Juice Powder

Regular Soy Milk Clorox Pink Lemonade Powder

Lowfat Chocolate Milk Apple Juice Cappuccino Powder

Regular Chocolate Milk Cranberry Juice Salt Powder

Coke Grape Juice Sugar Powder

Pepsi Ruby Grapefruit Juice Suisse Mocha

Sprite

Table 5: his table lists all supported mediummaterial presets. he top entries are from Jensen et al. [23], and
the bottom ones are fromNarasimhan et al. [33]. hey all use units of 1

mm
, so remember to set scale

appropriately when your scene is not in units of millimeters. hese material presets can be used with
the plugins homogeneous, dipole, and hk

104

8. Plugin reference 8.5. Participating media

8.5.2. Heterogeneous participating medium (heterogeneous)

Parameter Type Description

method string Speciies the sampling method that is used to generate scat-
tering events within the medium.

(i) simpson: Sampling is done by inverting a determin-
istic quadrature rule based on composite Simpson in-
tegration over small ray segments. Beneits from the
use of good sample generators (e.g. ldsampler).

(ii) woodcock: Generate samples using Woodcock track-
ing. his is usually faster and always unbiased, but has
the disadvantages of not beneiting from good sample
generators and not providing information that is re-
quired by bidirectional rendering techniques.

Default: woodcock

density volume Volumetric data source that supplies the medium densities
(in inverse scene units)

albedo volume Volumetric data source that supplies the single-scattering
albedo

orientation volume Optional: volumetric data source that supplies the local par-
ticle orientations throughout the medium

scale float Optional scale factor that will be applied to the density
parameter. Provided for convenience when accomodating
data based on diferent units, or to simply tweak the density
of the medium. (Default: 1)

(Nested plugin) phase A nested phase function that describes the directional scat-
tering properties of the medium. When none is speci-
ied, the renderer will automatically use an instance of
isotropic.

(a) 40 (b) 200 (c) 1000

Figure 21: Renderings of an index-matched medium using diferent scale factors (Listing 31)

his plugin provides a lexible heterogeneous medium implementation, which acquires its data

from nested volume instances. hese can be constant, use a procedural function, or fetch data from

disk, e.g. using a memory-mapped density grid. See Section 8.7 for details on volume data sources.

105

8. Plugin reference 8.5. Participating media

Instead of allowing separate volumes to be provided for the scattering and absorption parameters

sigmaS and sigmaA (as is done in homogeneous), this class instead takes the approach of enforcing

a spectrally uniform value of sigmaT, which must be provided using a nested scalar-valued volume

named density.

Another nested spectrum-valued albedo volume must also be provided, which is used to compute

the scattering coeicient σs using the expression σs ≙ scale∗density∗albedo (i.e. ’albedo’ contains

the single-scattering albedo of the medium.

Optionally, one can also provide an vector-valued orientation volume, which contains local

particle orientation that will be passed to scattering models that support this, such as a the Micro-

lake or Kajiya-Kay phase functions.

<!-- Declare a heterogeneous participating medium named 'smoke' -->

<medium type="heterogeneous" id="smoke">

<string name="method" value="simpson"/>

<!-- Acquire density values from an external data file -->

<volume name="density" type="gridvolume">

<string name="filename" value="frame_0150.vol"/>

</volume>

<!-- The albedo is constant and set to 0.9 -->

<volume name="albedo" type="constvolume">

<spectrum name="value" value="0.9"/>

</volume>

<!-- Use an isotropic phase function -->

<phase type="isotropic"/>

<!-- Scale the density values as desired -->

<float name="scale" value="200"/>

</medium>

<!-- Attach the index-matched medium to a shape in the scene -->

<shape type="obj">

<!-- Load an OBJ file, which contains a mesh version

of the axis-aligned box of the volume data file -->

<string name="filename" value="bounds.obj"/>

<!-- Reference the medium by ID -->

<ref name="interior" id="smoke"/>

<!-- If desired, this shape could also declare

a BSDF to create an index-mismatched

transition, e.g.

<bsdf type="dielectric"/>

-->

</shape>

Listing 31: A simple heterogeneous medium backed by a grid volume

106

8. Plugin reference 8.6. Phase functions

8.6. Phase functions

his section contains a description of all implemented medium scattering models, which are also

known as phase functions. hese are very similar in principle to surface scattering models (or BSDFs),

and essentially describe where light travels ater hitting a particle within the medium.

he most commonly used models for smoke, fog, and other homogeneous media are isotropic

scattering (isotropic) and the Henyey-Greenstein phase function (hg). Mitsuba also supports

anisotropic media, where the behavior of the medium changes depending on the direction of light

propagation (e.g. in volumetric representations of fabric). hese are the Kajiya-Kay (kkay) and Micro-

lake (microflake) models.

Finally, there is also a phase function for simulating scattering in planetary atmospheres (rayleigh).

107

8. Plugin reference 8.6. Phase functions

8.6.1. Isotropic phase function (isotropic)

(a) Isotropic (b) Anisotropic micro-lakes

Figure 22: Heterogeneous volume renderings of a scarf model with isotropic and anisotropic phase functions.

his phase function simulates completely uniform scattering, where all directionality is lost ater a

single scattering interaction. It does not have any parameters.

108

8. Plugin reference 8.6. Phase functions

8.6.2. Henyey-Greenstein phase function (hg)

Parameter Type Description

g float his parameter must be somewhere in the range −1 to 1
(but not equal to −1 or 1). It denotes the mean cosine
of scattering interactions. A value greater than zero indi-
cates that medium interactions predominantly scatter in-
cident light into a similar direction (i.e. the medium is
forward-scattering), whereas values smaller than zero cause
the medium to be scatter more light in the opposite direc-
tion.

his plugin implements the phase function model proposed by Henyey and Greenstein [16]. It is

parameterizable from backward- (g < 0) through isotropic- (g ≙ 0) to forward (g > 0) scattering.

109

8. Plugin reference 8.6. Phase functions

8.6.3. Rayleigh phase function (rayleigh)

Scattering by particles that are much smaller than the wavelength of light (e.g. individual molecules

in the atmosphere) is well-approximated by the Rayleigh phase function. his plugin implements an

unpolarized version of this scattering model (i.e the efects of polarization are ignored). his plugin

is useful for simulating scattering in planetary atmospheres.

his model has no parameters.

110

8. Plugin reference 8.6. Phase functions

8.6.4. Kajiya-Kay phase function (kkay)

his plugin implements the Kajiya-Kay [25] phase function for volumetric rendering of ibers, e.g.

hair or cloth.

he function is normalized so that it has no energy loss when ks=1 and illumination arrives per-

pendicularly to the surface.

111

8. Plugin reference 8.6. Phase functions

8.6.5. Micro-lake phase function (microflake)

Parameter Type Description

stddev float Standard deviation of the micro-lake normals. his speci-
ies the roughness of the ibers in the medium.

(a) stddev=0.2 (b) stddev=0.05

his plugin implements the anisotropic micro-lake phase function described in “A radiative trans-

fer framework for rendering materials with anisotropic structure” by Wenzel Jakob, Adam Arbree,

Jonathan T. Moon, Kavita Bala, and Steve Marschner [18].

he implementation in this plugin is speciic to rough ibers and uses a Gaussian-type lake dis-

tribution. It is much faster than the spherical harmonics approach proposed in the original paper.

his distribution, as well as the implemented sampling method, are described in the paper “Building

Volumetric Appearance Models of Fabric using Micro CT Imaging” by Shuang Zhao, Wenzel Jakob,

Steve Marschner, and Kavita Bala [53].

Note: this phase function must be used with a medium that speciies the local iber orientation at

diferent points in space. Please refer to heterogeneous for details.

Figure 23: A range of diferent knit patterns, rendered using the heterogeneous and microflake plugins.
Courtesy of Yuksel et al. [52].

112

8. Plugin reference 8.6. Phase functions

8.6.6. Mixture phase function (mixturephase)

Parameter Type Description

weights string A comma-separated list of phase function weights

(Nested plugin) phase Multiple phase function instances that should be mixed ac-
cording to the speciied weights

his plugin implements a “mixture” scattering model analogous to mixturebsdf, which repre-

sents linear combinations of multiple phase functions. here is no limit on how many phase function

can be mixed, but their combination weights must be non-negative and sum to a value of one or less

to ensure energy balance.

113

8. Plugin reference 8.7. Volume data sources

8.7. Volume data sources

his section covers the diferent types of volume data sources included with Mitsuba. hese plug-

ins are intended to be used together with the heterogeneous medium plugin and provide three-

dimensional spatially varying density, albedo, and orientation ields.

114

8. Plugin reference 8.7. Volume data sources

8.7.1. Caching volume data source (volcache)

Parameter Type Description

blockSize integer Size of the individual cache blocks (Default: 8, i.e. 8×8×8)

voxelWidth float Width of a voxel (in a cache block) expressed inworld-space
units. (Default: set to the ray marching step size of the
nested medium)

memoryLimit integer Maximum allowed memory usage in MiB. (Default: 1024,
i.e. 1 GiB)

toWorld transform Optional linear transformation that should be applied to the
volume data

(Nested plugin) volume A nested volume data source

his plugin can be added between the renderer and another data source, for which it caches all

data lookups using a LRU scheme. his is useful when the nested volume data source is expensive to

evaluate.

he cache works by performing on-demand rasterization of subregions of the nested volume into

blocks (8 × 8 × 8 by default). hese are kept in memory until a user-speciiable threshold is exeeded,

ater which point a least recently used (LRU) policy removes records that haven’t been accessed in a

long time.

115

8. Plugin reference 8.7. Volume data sources

8.7.2. Grid-based volume data source (gridvolume)

Parameter Type Description

filename string Speciies the ilename of the volume data ile to be loaded

sendData boolean When this parameter is set totrue, the implementationwill
send all volume data to other network render nodes. Other-
wise, they are expected to have access to an identical vol-
ume data ile that can be mapped into memory. (Default:
false)

toWorld transform Optional linear transformation that should be applied to the
data

min, max point Optional parameter that can be used to re-scale the data so
that it lies in the bounding box between min and max.

his class implements access to memory-mapped volume data stored on a 3D grid using a simple

binary exchange format. he format uses a little endian encoding and is speciied as follows:

Position Content

Bytes 1-3 ASCII Bytes ’V’, ’O’, and ’L’

Byte 4 File format version number (currently 3)

Bytes 5-8 Encoding identiier (32-bit integer). he following choices are available:

1. Dense float32-based representation

2. Dense float16-based representation (currently not supported by this

implementation)

3. Dense uint8-based representation (he range 0..255 will be mapped

to 0..1)

4. Dense quantized directions. he directions are stored in spherical co-

ordinates with a total storage cost of 16 bit per entry.

Bytes 9-12 Number of cells along the X axis (32 bit integer)

Bytes 13-16 Number of cells along the Y axis (32 bit integer)

Bytes 17-20 Number of cells along the Z axis (32 bit integer)

Bytes 21-24 Number of channels (32 bit integer, supported values: 1 or 3)

Bytes 25-48 Axis-aligned bounding box of the data stored in single precision (order:

xmin, ymin, zmin, xmax, ymax, zmax)

Bytes 49-* Binary data of the volume stored in the speciied encoding. he data

are ordered so that the following C-style indexing operation makes sense

ater the ile has been mapped into memory:

data[((zpos*yres + ypos)*xres + xpos)*channels + chan]

where (xpos, ypos, zpos, chan) denotes the lookup location.

Note that Mitsuba expects that entries in direction volumes are either zero or valid unit vectors.

116

8. Plugin reference 8.7. Volume data sources

When using this data source to represent loating point density volumes, please ensure that the

values are all normalized to lie in the range [0, 1]—otherwise, the Woodcock-Tracking integration

method in heterogeneous will produce incorrect results.

117

8. Plugin reference 8.7. Volume data sources

8.7.3. Constant-valued volume data source (constvolume)

Parameter Type Description

value float or
spectrum or
vector

Speciies the value of the volume

his plugin provides a volume data source that is constant throughout its domain. Depending on

how it is used, its value can either be a scalar, a color spectrum, or a 3D vector.

<medium type="heterogeneous">

<volume type="constvolume" name="density">

<float name="value" value="1"/>

</volume>

<volume type="constvolume" name="albedo">

<rgb name="value" value="0.9 0.9 0.7"/>

</volume>

<volume type="constvolume" name="orientation">

<vector name="value" x="0" y="1" z="0"/>

</volume>

<!-- remaining parameters for

the 'heterogeneous' plugin -->

</medium>

Listing 32: Deinition of a heterogeneous medium with homogeneous contents

118

8. Plugin reference 8.8. Emitters

8.8. Emitters

Mitsuba supports a wide range of emitters/light sources, which can be classiied into two main cate-

gories: emitters which are located somewhere within the scene, and emitters that surround the scene

to simulate a distant environment. An overview of the available types is shown below:

Environment map emitter (envmap)

Area emitter (area)Point emitter (point)

Collimated beam (collimated)

Spot emitter (spot)

Directional emitter (directional)

Constant environment emitter (constant)

Sun & sky emitter (sunsky)Sky emitter (sky) Sun emitter (sun)

Environment emitters

Standard emitters

Figure 24: Schematic overview of themost important emitters inMitsuba. he arrows indicate the directional
distribution of light.

119

Standard emi
8. Plugin reference 8.8. Emitters

8.8.1. Point light source (point)

Parameter Type Description

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. sensor space ≙ world space))

position point Alternative parameter for specifying the light source posi-
tion. Note that only one of the parameters toWorld and
position can be used at a time.

intensity spectrum Speciies the radiant intensity in units of power per unit
steradian. (Default: 1)

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his sensor plugin implements a simple point light source, which uniformly radiates illumination

into all directions.

120

mitters
8. Plugin reference 8.8. Emitters

8.8.2. Area light (area)

Parameter Type Description

radiance spectrum Speciies the emitted radiance in units of power per unit
area per unit steradian.

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his plugin implements an area light, i.e. a light source that emits difuse illumination from the

exterior of an arbitrary shape. Since the emission proile of an area light is completely difuse, it has

the same apparent brightness regardless of the observer’s viewing direction. Furthermore, since it

occupies a nonzero amount of space, an area light generally causes scene objects to cast sot shadows.

When modeling scenes involving area lights, it is preferable to use spheres as the emitter shapes,

since they provide a particularly good direct illumination sampling strategy (see the sphere plugin

for an example).

To create an area light source, simply instantiate the desired emitter shape and specify an area

instance as its child:

<!-- Create a spherical light source at the origin -->

<shape type="sphere">

<emitter type="area">

<spectrum name="radiance" value="1"/>

</emitter>

</shape>

121

8. Plugin reference 8.8. Emitters

8.8.3. Spot light source (spot)

Parameter Type Description

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. sensor space ≙ world space))

intensity spectrum Speciies the maximum radiant intensity at the center in
units of power per unit steradian. (Default: 1)

cutoffAngle float Cutof angle, beyond which the spot light is completely
black (Default: 20 degrees)

beamWidth float Subtended angle of the central beam portion (Default:
cutoffAngle ⋅ 3/4)

texture texture An optional texture to be projected along the spot light

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his plugin provides a spot light with a linear fallof. In its local coordinate system, the spot light is

positioned at the origin and points along the positive Z direction. It can be conveniently reoriented

using the lookat tag, e.g.:

<emitter type="spot">

<transform name="toWorld">

<!-- Orient the light so that points from (1, 1, 1) towards (1, 2, 1) -->

<lookat origin="1, 1, 1" target="1, 2, 1"/>

</transform>

</emitter>

he intensity linearly ramps up from cutoffAngle to beamWidth (both speciied in degrees),

ater which it remains at the maximum value. A projection texture may optionally be supplied.

122

8. Plugin reference 8.8. Emitters

8.8.4. Directional emitter (directional)

Parameter Type Description

toWorld transform or
animation

Speciies an optional emitter-to-world transformation.
(Default: none (i.e. emitter space ≙ world space))

direction vector Alternative to toWorld: explicitly speciies the illumination
direction. Note that only one of the two parameters can be
used.

irradiance spectrum Speciies the amount of power per unit area received by a
hypothetical surface normal to the speciied direction (De-
fault: 1)

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his emitter plugin implements a distant directional source, which radiates a speciied power per

unit area along a ixed direction. By default, the emitter radiates in the direction of the postive Z axis.

123

8. Plugin reference 8.8. Emitters

8.8.5. Collimated beam emitter (collimated)

Parameter Type Description

toWorld transform or
animation

Speciies an optional emitter-to-world transformation.
(Default: none (i.e. emitter space ≙ world space))

power spectrum Speciies the amount of power radiated along the beam (De-
fault: 1)

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his emitter plugin implements a collimated beam source, which radiates a speciied amount of

power along a ixed ray. It can be thought of as the limit of a spot light as its ield of view tends to

zero.

Such a emitter is useful for conducting virtual experiments and testing the renderer for correctness.

By default, the emitter is located at the origin and radiates into the positive Z direction (0, 0, 1).
his can be changed by providing a custom toWorld transformation.

124

Environment
8. Plugin reference 8.8. Emitters

8.8.6. Skylight emitter (sky)

Parameter Type Description

turbidity float his parameter determines the amount of aerosol present in
the atmosphere. Valid range: 1-10. (Default: 3, correspond-
ing to a clear sky in a temperate climate)

albedo spectrum Speciies the ground albedo (Default: 0.15)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format
(Default: 15, 00, 00, i.e. 3PM)

latitude,

longitude,

timezone

float hese three parameters specify the oberver’s latitude and
longitude in degrees, and the local timezone ofset in hours,
which are required to compute the sun’s position. (Default:
35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

stretch float Stretch factor to extend emitter below the horizon, must be
in [1,2] (Default: 1, i.e. not used)

resolution integer Speciies the horizontal resolution of the precomputed im-
age that is used to represent the sun environment map (De-
fault: 512, i.e. 512×256)

scale float his parameter can be used to scale the the amount of illu-
mination emitted by the sky emitter. (Default: 1)

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. sensor space ≙ world space))

(a) 5AM (b) 7AM (c) 9AM (d) 11AM (e) 1PM (f) 3PM (g) 5PM (h) 6:30 PM

Figure 25: Time series at the default settings (Equidistant isheye projection of the sky onto a disk. East is let.)

his plugin provides the physically-based skylight model by Hošek and Wilkie [31]. It can be used

to create predictive daylight renderings of scenes under clear skies, which is useful for architectural

and computer vision applications. he implementation in Mitsuba is based on code that was gener-

ously provided by the authors.

he model has two main parameters: the turbidity of the atmosphere and the position of the

125

8. Plugin reference 8.8. Emitters

sun. he position of the sun in turn depends on a number of secondary parameters, including the

latitude, longitude, and timezone at the location of the observer, as well as the current year,

month, day, hour, minute, and second. Using all of these, the elevation and azimuth of the sun are

computed using the PSA algorithm by Blanco et al. [2], which is accurate to about 0.5 arcminutes (1/120

degrees). Note that this algorithm does not account for daylight savings time where it is used, hence

a manual correction of the time may be necessary. For detailed coordinate and timezone information

of various cities, see http://www.esrl.noaa.gov/gmd/grad/solcalc.

If desired, the world-space solar vector may also be speciied using the sunDirection parameter,

in which case all of the previously mentioned time and location parameters become irrelevant.

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 8 (h) 10

Figure 26: Sky light for diferent turbidity values (default coniguration at 5PM)

Turbidity, the other important parameter, speciies the aerosol content of the atmosphere. Aerosol

particles cause additional scattering that manifests in a halo around the sun, as well as color fringes

near the horizon. Smaller turbidity values (∼ 1 − 2) produce an arctic-like clear blue sky, whereas

larger values (∼ 8− 10) create an atmosphere that is more typical of a warm, humid day. Note that this

model does not aim to reproduce overcast, cloudy, or foggy atmospheres with high corresponding

turbidity values. An photographic environment map may be more appropriate in such cases.

he default coordinate system of the emitter associates the up direction with the +Y axis. he east

direction is associated with +X and the north direction is equal to +Z. To change this coordinate

system, rotations can be applied using the toWorld parameter (see Listing 33 for an example).

By default, the emitter will not emit any light below the horizon, which means that these regions

are black when observed directly. By setting the stretch parameter to values between 1 and 2, the

sky can be extended to cover these directions as well. his is of course a complete kludge and only

meant as a quick workaround for scenes that are not properly set up.

Instead of evaluating the full sky model every on every radiance query, the implementation pre-

computes a low resolution environment map (512× 256) of the entire sky that is then forwarded to

the envmap plugin—this dramatically improves rendering performance. his resolution is generally

plenty since the sky radiance distribution is so smooth, but it it can be adjusted manually if necessary

using the resolution parameter.

Note that while the model encompasses sunrise and sunset conigurations, it does not extend to

the night sky, where illumination from stars, galaxies, and the moon dominate. When started with a

sun coniguration that lies below the horizon, the plugin will fail with an error message.

<emitter type="sky">

<transform name="toWorld">

<rotate x="1" angle="90"/>

</transform>

</emitter>

Listing 33: Rotating the sky emitter for scenes that use Z as the “up” direction

126

http://www.esrl.noaa.gov/gmd/grad/solcalc

8. Plugin reference 8.8. Emitters

Physical units and spectral rendering

Like the blackbody emission proile (Page 25), the sky model introduces physical units into the

rendering process. he radiance values computed by this plugin have units of power (W) per unit

area (m−2) per steradian (sr−1) per unit wavelength (nm−1). If these units are inconsistent with your

scene description, you may use the optional scale parameter to adjust them.

When Mitsuba is compiled for spectral rendering, the plugin switches from RGB to a spectral

variant of the skylight model, which relies on precomputed data between 320 and 720nm sampled at

40nm-increments.

Ground albedo

he albedo of the ground (e.g. due to rock, snow, or vegetation) can have a noticeable and nonlinear

efect on the appearance of the sky. Figure 28 shows an example of this efect. By default, the ground

albedo is set to a 15% gray.

(a) 3 PM (b) 6:30 PM

Figure 27: Renderings with the plastic material under default conditions. Note that these only contain
skylight illumination. For a model that also includes the sun, refer to sunsky.

(a) albedo=0% (b) albedo=100% (c) albedo=20% green

Figure 28: Inluence of the ground albedo on the apperance of the sky

127

nt emitters
8. Plugin reference 8.8. Emitters

8.8.7. Sun emitter (sun)

Parameter Type Description

turbidity float his parameter determines the amount of aerosol present in
the atmosphere. Valid range: 2-10. (Default: 3, correspond-
ing to a clear sky in a temperate climate)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format
(Default: 15, 00, 00, i.e. 3PM)

latitude,

longitude,

timezone

float hese three parameters specify the oberver’s latitude and
longitude in degrees, and the local timezone ofset in hours,
which are required to compute the sun’s position. (Default:
35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

resolution integer Speciies the horizontal resolution of the precomputed im-
age that is used to represent the sun environment map (De-
fault: 512, i.e. 512×256)

scale float his parameter can be used to scale the the amount of illu-
mination emitted by the sun emitter. (Default: 1)

sunRadiusScale float Scale factor to adjust the radius of the sun, while preserving
its power. Set to 0 to turn it into a directional light source.

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his plugin implements the physically-based sun model proposed by Preetham et al. [38]. Using

the provided position and time information (see sky for details), it can determine the position of the

sun as seen from the position of the observer. he radiance arriving at the earth surface is then found

based on the spectral emission proile of the sun and the extinction cross-section of the atmosphere

(which depends on the turbidity and the zenith angle of the sun).

Like the blackbody emission proile (Page 25), the sun model introduces physical units into the

rendering process. he radiance values computed by this plugin have units of power (W) per unit

area (m−2) per steradian (sr−1) per unit wavelength (nm−1). If these units are inconsistent with your

scene description, you may use the optional scale parameter to adjust them.

his plugin supplies proper spectral power distributions when Mitsuba is compiled in spectral

rendering mode. Otherwise, they are simply projected onto a linear RGB color space.

Remarks:

• he sun is an intense light source that subtends a tiny solid angle. his can be a problem for cer-
tain rendering techniques (e.g. path tracing), which produce high variance output (i.e. noise in
renderings) when the scene also contains specular or glossy or materials.

128

8. Plugin reference 8.8. Emitters

8.8.8. Sun and sky emitter (sunsky)

Parameter Type Description

turbidity float his parameter determines the amount of aerosol present in
the atmosphere. Valid range: 1-10. (Default: 3, correspond-
ing to a clear sky in a temperate climate)

albedo spectrum Speciies the ground albedo (Default: 0.15)

year, month, day integer Denote the date of the observation (Default: 2010, 07, 10)

hour,minute,⤦
second

float Local time at the location of the observer in 24-hour format
(Default: 15, 00, 00, i.e. 3PM)

latitude,

longitude,

timezone

float hese three parameters specify the oberver’s latitude and
longitude in degrees, and the local timezone ofset in hours,
which are required to compute the sun’s position. (Default:
35.6894, 139.6917, 9 — Tokyo, Japan)

sunDirection vector Allows to manually override the sun direction in world
space. When this value is provided, parameters pertain-
ing to the computation of the sun direction (year, hour,
latitude, etc. are unnecessary. (Default: none)

stretch float Stretch factor to extend emitter below the horizon, must be
in [1,2] (Default: 1, i.e. not used)

resolution integer Speciies the horizontal resolution of the precomputed im-
age that is used to represent the sun environment map (De-
fault: 512, i.e. 512×256)

sunScale float his parameter can be used to separately scale the the
amount of illumination emitted by the sun. (Default: 1)

skyScale float his parameter can be used to separately scale the the
amount of illumination emitted by the sky. (Default: 1)

sunRadiusScale float Scale factor to adjust the radius of the sun, while preserving
its power. Set to 0 to turn it into a directional light source.

(a) sky emitter (b) sun emitter (c) sunsky emitter

Figure 29: A coated rough copper test ball lit with the three provided daylight illumination models

his convenience plugin has the sole purpose of instantiating sun and sky and merging them into

a joint environment map. Please refer to these plugins individually for more details.

129

8. Plugin reference 8.8. Emitters

8.8.9. Environment emitter (envmap)

Parameter Type Description

filename string Filename of the radiance-valued input image to be loaded;
must be in latitude-longitude format.

scale float A scale factor that is applied to the radiance values stored in
the input image. (Default: 1)

toWorld transform Speciies an optional linear emitter-to-world space rotation.
(Default: none (i.e. emitter space ≙ world space))

gamma float Optional parameter to override the gamma value of the
source bitmap, where 1 indicates a linear color space and
the special value -1 corresponds to sRGB. (Default: auto-
matically detect based on the image type and metadata)

cache boolean Preserve generated MIP map data in a cache ile? his will
cause a ile named ilename.mip to be created. (Default:
automatic—use caching for images larger than 1M pixels.)

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

(a) hemuseum environment map by Bernhard Vogl that

is used in many example renderings in this document

+Z -X+X

+Y

-Y

u
v

-Z

wraps

(b) Coordinate conventions used when mapping the in-

put image onto the sphere.

his plugin provides a HDRI (high dynamic range imaging) environment map, which is a type of

light source that is well-suited for representing “natural” illumination. Many images in this document

are made using the environment map shown in (a).

he implementation loads a captured illumination environment from a image in latitude-longitude

format and turns it into an ininitely distant emitter. he image could either be be a processed photo-

graph or a rendering made using thespherical sensor. he direction conventions of this transforma-

tion are shown in (b). he plugin can work with all types of images that are natively supported by Mit-

suba (i.e. JPEG, PNG, OpenEXR, RGBE, TGA, and BMP). In practice, a good environment map will

contain high-dynamic range data that can only be represented using the OpenEXR or RGBE ile for-

mats. High quality free light probes are available on Paul Debevec’s website (http://gl.ict.usc.

edu/Data/HighResProbes) and Bernhard Vogl’s website (http://dativ.at/lightprobes/).

Like the bitmap texture, this plugin generates a cache ile named ilename.mipwhen given a large

input image. his signiicantly accelerates the loading times of subsequent renderings. When this is

not desired, specify cache=false to the plugin.

130

http://gl.ict.usc.edu/Data/HighResProbes
http://gl.ict.usc.edu/Data/HighResProbes
http://dativ.at/lightprobes/

8. Plugin reference 8.8. Emitters

8.8.10. Constant environment emitter (constant)

Parameter Type Description

radiance spectrum Speciies the emitted radiance in units of power per unit
area per unit steradian.

samplingWeight float Speciies the relative amount of samples allocated to this
emitter. (Default: 1)

his plugin implements a constant environment emitter, which surrounds the scene and radiates

difuse illumination towards it. his is oten a good default light source when the goal is to visualize

some loaded geometry that uses basic (e.g. difuse) materials.

131

8. Plugin reference 8.9. Sensors

8.9. Sensors

In Mitsuba, sensors, along with a ilm, are responsible for recording radiance measurements in some

usable format. his includes default choices such as perspective or orthographic cameras, as well as

more specialized sensors that measure the radiance into a given direction or the irradiance received

by a certain surface. he following section lists the available choices.

Handedness convention

Sensors in Mitsuba are right-handed. Any number of rotations and translations can be applied to

them without changing this property. By default they are located at the origin and oriented in such a

way that in the rendered image, +X points let, +Y points upwards, and +Z points along the viewing

direction.

Let-handed sensors are also supported. To switch the handedness, lip any one of the axes, e.g. by

passing a scale transformation like <scale x="-1"/> to the sensor’s toWorld parameter.

132

8. Plugin reference 8.9. Sensors

8.9.1. Perspective pinhole camera (perspective)

Parameter Type Description

toWorld transform or
animation

Speciies an optional camera-to-world transformation.
(Default: none (i.e. camera space ≙ world space))

focalLength string Denotes the camera’s focal length speciied using 35mm ilm
equivalent units. See the main description for further de-
tails. (Default: 50mm)

fov float An alternative to focalLength: denotes the camera’s ield
of view in degrees—must be between 0 and 180, excluding
the extremes.

fovAxis string When the parameter fov is given (and only then), this pa-
rameter further speciies the image axis, to which it applies.

(i) x: fovmaps to the x-axis in screen space.

(ii) y: fovmaps to the y-axis in screen space.

(iii) diagonal: fovmaps to the screen diagonal.

(iv) smaller: fov maps to the smaller dimension (e.g. x
when width<height)

(v) larger: fov maps to the larger dimension (e.g. y
when width<height)

he default is x.

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

nearClip,

farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) hematerial test ball viewed through a perspective pin-

hole camera. Everything is in sharp focus.

(b) A rendering of the Cornell box

his plugin implements a simple idealizied perspective camera model, which has an ininitely small

aperture. his creates an ininite depth of ield, i.e. no optical blurring occurs. he camera is can be

133

8. Plugin reference 8.9. Sensors

speciied to move during an exposure, hence temporal blur is still possible.

By default, the camera’s ield of view is speciied using a 35mm ilm equivalent focal length, which is

irst converted into a diagonal ield of view and subsequently applied to the camera. his assumes that

the ilm’s aspect ratio matches that of 35mm ilm (1.5:1), though the parameter still behaves intuitively

when this is not the case. Alternatively, it is also possible to specify a ield of view in degrees along a

given axis (see the fov and fovAxis parameters).

he exact camera position and orientation is most easily expressed using the lookat tag, i.e.:

<sensor type="perspective">

<transform name="toWorld">

<!-- Move and rotate the camera so that looks from (1, 1, 1) to (1, 2, 1)

and the direction (0, 0, 1) points "up" in the output image -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>

</transform>

</sensor>

134

8. Plugin reference 8.9. Sensors

8.9.2. Perspective camera with a thin lens (thinlens)

Parameter Type Description

toWorld transform or
animation

Speciies an optional camera-to-world transformation.
(Default: none (i.e. camera space ≙ world space))

apertureRadius float Denotes the radius of the camera’s aperture in scene units.

focusDistance float Denotes the world-space distance from the camera’s aper-
ture to the focal plane. (Default: 0)

focalLength string Denotes the camera’s focal length speciied using 35mm ilm
equivalent units. See the main description for further de-
tails. (Default: 50mm)

fov float An alternative to focalLength: denotes the camera’s ield
of view in degrees—must be between 0 and 180, excluding
the extremes.

fovAxis string When the parameter fov is given (and only then), this pa-
rameter further speciies the image axis, to which it applies.

(i) x: fovmaps to the x-axis in screen space.

(ii) y: fovmaps to the y-axis in screen space.

(iii) diagonal: fovmaps to the screen diagonal.

(iv) smaller: fov maps to the smaller dimension (e.g. x
when width<height)

(v) larger: fov maps to the larger dimension (e.g. y
when width<height)

he default is x.

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

nearClip,

farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) he material test ball viewed through a perspective

thin lens camera. Points away from the focal plane

project onto a circle of confusion.

(b) A rendering of the Cornell box

135

8. Plugin reference 8.9. Sensors

his plugin implements a simple perspective camera model with a thin lens at its circular aperture.

It is very similar to the perspective plugin except that the extra lens element permits rendering

with a speciiable (i.e. non-ininite) depth of ield. To conigure this, it has two extra parameters

named apertureRadius and focusDistance.

By default, the camera’s ield of view is speciied using a 35mm ilm equivalent focal length, which is

irst converted into a diagonal ield of view and subsequently applied to the camera. his assumes that

the ilm’s aspect ratio matches that of 35mm ilm (1.5:1), though the parameter still behaves intuitively

when this is not the case. Alternatively, it is also possible to specify a ield of view in degrees along a

given axis (see the fov and fovAxis parameters).

he exact camera position and orientation is most easily expressed using the lookat tag, i.e.:

<sensor type="thinlens">

<transform name="toWorld">

<!-- Move and rotate the camera so that looks from (1, 1, 1) to (1, 2, 1)

and the direction (0, 0, 1) points "up" in the output image -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>

</transform>

<!-- Focus on the target -->

<float name="focusDistance" value="1"/>

<float name="apertureRadius" value="0.1"/>

</sensor>

136

8. Plugin reference 8.9. Sensors

8.9.3. Orthographic camera (orthographic)

Parameter Type Description

toWorld transform or
animation

Speciies an optional camera-to-world transformation.
(Default: none (i.e. camera space ≙ world space))

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

nearClip,

farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) hematerial test ball viewed through an orthographic

camera. Note the complete lack of perspective.

(b) A rendering of the Cornell box

his plugin implements a simple orthographic camera, i.e. a sensor based on an orthographic

projection without any form of perspective. It can be thought of as a planar sensor that measures the

radiance along its normal direction. By default, this is the region [−1, 1]2 inside the XY-plane facing

along the positive Z direction. Transformed versions can be instantiated e.g. as follows:

<sensor type="orthographic">

<transform name="toWorld">

<!-- Resize the sensor plane to 20x20 world space units -->

<scale x="10" y="10"/>

<!-- Move and rotate it so that it contains the point

(1, 1, 1) and faces direction (0, 1, 0) -->

<lookat origin="1, 1, 1" target="1, 2, 1" up="0, 0, 1"/>

</transform>

</sensor>

137

8. Plugin reference 8.9. Sensors

8.9.4. Telecentric lens camera (telecentric)

Parameter Type Description

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. camera space ≙ world space))

apertureRadius float Denotes the radius of the camera’s aperture in scene units.
(Default: 0)

focusDistance float Denotes the world-space distance from the camera’s aper-
ture to the focal plane. (Default: 0)

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

nearClip,

farClip

float Distance to the near/far clip planes. (Default: near-
Clip=1e-2 (i.e. 0.01) and farClip=1e4 (i.e. 10000))

(a) he material test ball viewed through an telecentric

camera. Note the orthographic view together with a

narrow depth of ield.

(b) A rendering of the Cornell box.

he red and green walls are par-

tially visible due to the aperture

size.

his plugin implements a simple model of a camera with a telecentric lens. his is a type of lens

that produces an in-focus orthographic view on a plane at some distance from the sensor. Points

away from this plane are out of focus and project onto a circle of confusion. In comparison to ide-

alized orthographic cameras, telecentric lens cameras exist in the real world and ind use in some

computer vision applications where perspective efects cause problems. his sensor relates to the

orthographic plugin in the same way that thinlens does to perspective.

he coniguration is identical to the orthographic plugin, except that the additional parameters

apertureRadius and focusDistancemust be provided.

138

8. Plugin reference 8.9. Sensors

8.9.5. Spherical camera (spherical)

Parameter Type Description

toWorld transform or
animation

Speciies an optional camera-to-world transformation.
(Default: none (i.e. camera space ≙ world space))

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

(a) A rendering made using a spherical camera

he spherical camera captures the illumination arriving from all directions and turns it into a

latitude-longitude environment map. It is best used with a high dynamic range ilm that has 2:1 aspect

ratio, and the resulting output can then be turned into a distant light source using the envmap plugin.

By default, the camera is located at the origin, which can be changed by providing a custom toWorld

transformation.

139

8. Plugin reference 8.9. Sensors

8.9.6. Irradiance meter (irradiancemeter)

Parameter Type Description

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

his sensor plugin implements a simple irradiance meter, which measures the average incident

power per unit area over a provided surface. Such a sensor is useful for conducting virtual experi-

ments and testing the renderer for correctness. he result is normalized so that an irradiance sensor

inside an integrating sphere with constant radiance 1 records an irradiance value of π.

To create an irradiance meter, instantiate the desired measurement shape and specify the sensor

as its child. Note that when the sensor’s ilm resolution is larger than 1 × 1, each pixel will record the

average irradiance over a rectangular part of the shape’s UV parameterization.

<scene version="0.4.4">

<!-- Measure the average irradiance arriving on

a unit radius sphere located at the origin -->

<shape type="sphere">

<sensor type="irradiancemeter">

<!-- Write the output to a MATLAB M-file. The output file will

contain a 1x1 matrix storing an estimate of the average

irradiance over the surface of the sphere. -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->

<sampler type="independent">

<integer name="sampleCount" value="1024"/>

</sampler>

</sensor>

</shape>

<!-- ... other scene declarations ... -->

</scene>

140

8. Plugin reference 8.9. Sensors

8.9.7. Radiance meter (radiancemeter)

Parameter Type Description

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. sensor space ≙ world space))

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

his sensor plugin implements a simple radiance meter, which measures the incident power per

unit area per unit solid angle along a certain ray. It can be thought of as the limit of a standard

perspective camera as its ield of view tends to zero. Hence, when this sensor is given a ilm with

multiple pixels, all of them will record the same value.

Such a sensor is useful for conducting virtual experiments and testing the renderer for correctness.

By default, the sensor is located at the origin and performs a measurement in the positive Z direc-

tion (0, 0, 1). his can be changed by providing a custom toWorld transformation:

<scene version="0.4.4">

<sensor type="radiancemeter">

<!-- Measure the amount of radiance traveling

from the origin to (1,2,3) -->

<transform name="toWorld">

<lookat origin="1,2,3"

target="0,0,0"/>

</transform>

<!-- Write the output to a MATLAB M-file. The output file will

contain a 1x1 matrix storing an estimate of the incident

radiance along the specified ray. -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->

<sampler type="independent">

<integer name="sampleCount" value="1024"/>

</sampler>

</sensor>

<!-- ... other scene declarations ... -->

</scene>

141

8. Plugin reference 8.9. Sensors

8.9.8. Fluence meter (fluencemeter)

Parameter Type Description

toWorld transform or
animation

Speciies an optional sensor-to-world transformation. (De-
fault: none (i.e. sensor space ≙ world space))

shutterOpen,

shutterClose

float Speciies the time interval of the measurement—this is only
relevant when the scene is in motion. (Default: 0)

his sensor plugin implements a simple luence meter, which measures the average radiance pass-

ing through a speciied position. By default, the sensor is located at the origin.

Such a sensor is useful for conducting virtual experiments and testing the renderer for correctness.

<scene version="0.4.4">

<sensor type="fluencemeter">

<!-- Measure the average radiance traveling

through the point (1,2,3) -->

<transform name="toWorld">

<translate x="1" y="2" z="3"/>

</transform>

<!-- Write the output to a MATLAB M-file. The output file will

contain a 1x1 matrix storing the computed estimate -->

<film type="mfilm"/>

<!-- Use 1024 samples for the measurement -->

<sampler type="independent">

<integer name="sampleCount" value="1024"/>

</sampler>

</sensor>

<!-- ... other scene declarations ... -->

</scene>

142

8. Plugin reference 8.10. Integrators

8.10. Integrators

In Mitsuba, the diferent rendering techniques are collectively referred to as integrators, since they

perform integration over a high-dimensional space. Each integrator represents a speciic approach

for solving the light transport equation—usually favored in certain scenarios, but at the same time af-

fected by its own set of intrinsic limitations. herefore, it is important to carefully select an integrator

based on user-speciied accuracy requirements and properties of the scene to be rendered.

In Mitsuba’s XML description language, a single integrator is usually instantiated by declaring it at

the top level within the scene, e.g.

<scene version="0.4.4">

<!-- Instantiate a unidirectional path tracer,

which renders paths up to a depth of 5 -->

<integrator type="path">

<integer name="maxDepth" value="5"/>

</integrator>

<!-- Some geometry to be rendered -->

<shape type="sphere">

<bsdf type="diffuse"/>

</shape>

</scene>

his section gives a brief overview of the available choices along with their parameters.

Choosing an integrator

Due to the large number of integrators in Mitsuba, the decision of which one is suitable may seem

daunting. Assuming that the goal is to solve the full light transport equation without approximations,

a few integrators (ao, direct, vpl) can already be ruled out. he adjoint particle tracer ptracer is

also rarely used.

he following “algorithm” may help to decide amongst the remaining ones:

1. Try rendering the scene with an appropriate path tracer. If this gives the desired result, stop.

Mitsuba currently comes with three path tracer variations that target diferent setups: It your

scene contains no media and no surfaces with opacity masks, use the plain path tracer (path).

Otherwise, use one of the volumetric path tracers (volpath_simple or volpath). he latter

is preferable if the scene contains glossy surface scattering models.

2. If step 1 produced poor (i.e. noisy and slowly converging) results, try the bidirectional path

tracer (bdpt).

3. If steps 1 and 2 failed, the scene contains a relatively diicult lighting setup, potentially including

interaction with complex materials. In many cases, these diiculties can be greatly ameliorated

by running a “metropolized” version of a path tracer. his is implemented in the Primary

Sample Space MLT (pssmlt) plugin.

4. If none of the above worked, the remaining options are to try a photon mapping-type method

(photonmapper, ppm, sppm) or a path-space MLT method (mlt, erpt).

143

8. Plugin reference 8.10. Integrators

Path depth

(a) Max. depth = 1 (b) Max. depth = 2 (c) Max. depth = 3 (d) Max. depth =∞

Figure 30: heseCornell box renderings demonstrate the visual efect of amaximumpath depth. As the paths
are allowed to grow longer, the color saturation increases due to multiple scattering interactions
with the colored surfaces. At the same time, the computation time increases.

Almost all integrators use the concept of path depth. Here, a path refers to a chain of scattering

events that starts at the light source and ends at the eye or sensor. It is oten useful to limit the path

depth (Figure 30) when rendering scenes for preview purposes, since this reduces the amount of

computation that is necessary per pixel. Furthermore, such renderings usually converge faster and

therefore need fewer samples per pixel. When reference-quality is desired, one should always leave

the path depth unlimited.

Figure 31: A ray of emitted light is scattered by an object and subsequently reaches the eye/sensor. InMitsuba,
this is a depth-2 path, since it has two edges.

Mitsuba counts depths starting at 1, which correspond to visible light sources (i.e. a path that starts

at the light source and ends at the eye or sensor without any scattering interaction in between). A

depth-2 path (also known as “direct illumination”) includes a single scattering event (Figure 31).

Progressive versus non-progressive

Some of the rendering techniques in Mitsuba are progressive. What this means is that they display

a rough preview, which improves over time. Leaving them running indeinitely will continually re-

duce noise (in unbiased algorithms such as Metropolis Light Transport) or noise and bias (in biased

rendering techniques such as Progressive Photon Mapping).

144

8. Plugin reference 8.10. Integrators

Hiding directly visible emitters

Several rendering algorithms in Mitsuba have a feature to hide directly visible light sources (e.g. en-

vironment maps or area lights). While not particularly realistic, this feature is oten convenient to

remove a background from a rendering so that it can be pasted into a diferently-colored document.

Note that only directly visible emitters can be hidden using this feature—a relection on a shiny

surface will be unafected. To perform the kind of compositing shown in Figure 32, it is also necessary

to enable the alpha channel in the scene’s ilm instance (Section 8.12).

(a) Daylit smoke rendered with hideEmitters set to

false (the default setting)

(b) Rendered with hideEmitters set to true and alpha-

composited onto a white background.

Figure 32: An example application of the hideEmitters parameter together with alpha blending

145

8. Plugin reference 8.10. Integrators

8.10.1. Ambient occlusion integrator (ao)

Parameter Type Description

shadingSamples integer Speciies the number of shading samples that should be com-
puted per primary ray (Default: 1)

rayLength float Speciies the world-space length of the ambient occlusion
rays that will be cast. (Default: -1, i.e. automatic)

.

(a) A view of the scene on page 40, rendered using the Am-

bient Occlusion integrator

(b) A corresponding rendering created using the standard

path tracer

Ambient Occlusion is a simple non-photorealistic rendering technique that simulates the exposure

of an object to uniform illumination incident from all direction. It produces approximate shadowing

between closeby objects, as well as darkening in corners, creases, and cracks. he scattering models

associated with objects in the scene are ignored.

146

8. Plugin reference 8.10. Integrators

8.10.2. Direct illumination integrator (direct)

Parameter Type Description

shadingSamples integer his convenience parameter can be used to set both
emitterSamples and bsdfSamples at the same time.

emitterSamples integer Optional more ine-grained parameter: speciies the num-
ber of samples that should be generated using the direct il-
lumination strategies implemented by the scene’s emitters
(Default: set to the value of shadingSamples)

bsdfSamples integer Optional more ine-grained parameter: speciies the num-
ber of samples that should be generated using the BSDF
sampling strategies implemented by the scene’s surfaces (De-
fault: set to the value of shadingSamples)

strictNormals boolean Be strict about potential inconsistencies involving shading
normals? See page 149 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 145 for details. (De-
fault: no, i.e. false)

(a) Only BSDF sampling (b) Only emitter sampling (c) BSDF and emitter sampling

Figure 33: his plugin implements two diferent strategies for computing the direct illumination on surfaces.
Both of them are dynamically combined then obtain a robust rendering algorithm.

his integrator implements a direct illumination technique that makes use of multiple importance

sampling: for each pixel sample, the integrator generates a user-speciiable number of BSDF and emit-

ter samples and combines them using the power heuristic. Usually, the BSDF sampling technique

works very well on glossy objects but does badly everywhere else (Figure 33a), while the opposite is

true for the emitter sampling technique (Figure 33b). By combining these approaches, one can obtain

a rendering technique that works well in both cases (Figure 33c).

he number of samples spent on either technique is conigurable, hence it is also possible to turn

this plugin into an emitter sampling-only or BSDF sampling-only integrator.

For best results, combine the direct illumination integrator with the low-discrepancy sample gen-

erator (ldsampler). Generally, the number of pixel samples of the sample generator can be kept

relatively low (e.g. sampleCount=4), whereas the shadingSamples parameter of this integrator

should be increased until the variance in the output renderings is acceptable.

Remarks:

• his integrator does not handle participating media or indirect illumination.

147

8. Plugin reference 8.10. Integrators

8.10.3. Path tracer (path)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading
normals? See the description below for details. (Default: no,
i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 145 for details. (De-
fault: no, i.e. false)

his integrator implements a basic path tracer and is a good default choice when there is no strong

reason to prefer another method.

To use the path tracer appropriately, it is instructive to know roughly how it works: its main opera-

tion is to trace many light paths using randomwalks starting from the sensor. A single random walk is

shown below, which entails casting a ray associated with a pixel in the output image and searching for

the irst visible intersection. A new direction is then chosen at the intersection, and the ray-casting

step repeats over and over again (until one of several stopping criteria applies).

Image plane

Pixel

Emitter

At every intersection, the path tracer tries to create a connection to the light source in an attempt to

ind a complete path along which light can low from the emitter to the sensor. his of course only

works when there is no occluding object between the intersection and the emitter.

his directly translates into a category of scenes where a path tracer can be expected to produce

reasonable results: this is the case when the emitters are easily “accessible” by the contents of the scene.

For instance, an interior scene that is lit by an area light will be considerably harder to render when

this area light is inside a glass enclosure (which efectively counts as an occluder).

Like the direct plugin, the path tracer internally relies on multiple importance sampling to com-

bine BSDF and emitter samples. he main diference in comparison to the former plugin is that it

considers light paths of arbitrary length to compute both direct and indirect illumination.

148

8. Plugin reference 8.10. Integrators

For good results, combine the path tracer with one of the low-discrepancy sample generators (i.e.

ldsampler, halton, or sobol).

Strict normals: Triangle meshes oten rely on interpolated shading normals to suppress the inher-

ently faceted appearance of the underlying geometry. hese “fake” normals are not without problems,

however. hey can lead to paradoxical situations where a light ray impinges on an object from a di-

rection that is classiied as “outside” according to the shading normal, and “inside” according to the

true geometric normal.

he strictNormals parameter speciies the intended behavior when such cases arise. he default

(false, i.e. “carry on”) gives precedence to information given by the shading normal and considers

such light paths to be valid. his can theoretically cause light “leaks” through boundaries, but it is not

much of a problem in practice.

When set to true, the path tracer detects inconsistencies and ignores these paths. When objects

are poorly tesselated, this latter option may cause them to lose a signiicant amount of the incident

radiation (or, in other words, they will look dark).

he bidirectional integrators in Mitsuba (bdpt, pssmlt, mlt ...) implicitly have strictNormals

set to true. Hence, another use of this parameter is to match renderings created by these methods.

Remarks:

• his integrator does not handle participating media

• his integrator has poor convergence properties when rendering caustics and similar efects. In
this case, bdpt or one of the photon mappers may be preferable.

149

8. Plugin reference 8.10. Integrators

8.10.4. Simple volumetric path tracer (volpath_simple)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading
normals? See page 149 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 145 for details. (De-
fault: no, i.e. false)

his plugin provides a basic volumetric path tracer that can be used to compute approximate solu-

tions of the radiative transfer equation. his particular integrator is named “simple” because it does

not make use of multiple importance sampling. his results in a potentially faster execution time.

On the other hand, it also means that this plugin will likely not perform well when given a scene

that contains highly glossy materials. In this case, please use volpath or one of the bidirectional

techniques.

his integrator has special support for index-matched transmission events (i.e. surface scattering

events that do not change the direction of light). As a consequence, particating media enclosed by a

stencil shape (see Section 8.1 for details) are rendered considerably more eiciently when this shape

has no16 BSDF assigned to it (as compared to, say, a dielectric or roughdielectric BSDF).

Remarks:

• his integrator performs poorly when rendering participating media that have a diferent index of
refraction compared to the surrounding medium.

• his integrator has diiculties rendering scenes that contain relatively glossy materials (volpath
is preferable in this case).

• his integrator has poor convergence properties when rendering caustics and similar efects. In
this case, bdpt or one of the photon mappers may be preferable.

16this is what signals to Mitsuba that the boundary is index-matched and does not interact with light in any way. Alter-

natively, the mask and thindielectric BSDF can be used to specify index-matched boundaries that involve some

amount of interaction.

150

8. Plugin reference 8.10. Integrators

8.10.5. Extended volumetric path tracer (volpath)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

strictNormals boolean Be strict about potential inconsistencies involving shading
normals? See page 149 for details. (Default: no, i.e. false)

hideEmitters boolean Hide directly visible emitters? See page 145 for details. (De-
fault: no, i.e. false)

his plugin provides a volumetric path tracer that can be used to compute approximate solutions

of the radiative transfer equation. Its implementation makes use of multiple importance sampling

to combine BSDF and phase function sampling with direct illumination sampling strategies. On

surfaces, it behaves exactly like the standard path tracer.

his integrator has special support for index-matched transmission events (i.e. surface scattering

events that do not change the direction of light). As a consequence, particating media enclosed by a

stencil shape (see Section 8.1 for details) are rendered considerably more eiciently when this shape

has no17 BSDF assigned to it (as compared to, say, a dielectric or roughdielectric BSDF).

Remarks:

• his integrator will generally perform poorly when rendering participating media that have a dif-
ferent index of refraction compared to the surrounding medium.

• his integrator has poor convergence properties when rendering caustics and similar efects. In
this case, bdpt or one of the photon mappers may be preferable.

17this is what signals to Mitsuba that the boundary is index-matched and does not interact with light in any way. Alter-

natively, the mask and thindielectric BSDF can be used to specify index-matched boundaries that involve some

amount of interaction.

151

8. Plugin reference 8.10. Integrators

8.10.6. Bidirectional path tracer (bdpt)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

lightImage boolean Include sampling strategies that connect paths traced from
emitters directly to the camera? (i.e. what ptracer does)
his improves the efectiveness of bidirectional path tracing
but severely increases the local and remote communication
overhead, since large light images must be transferred be-
tween threads or over the network. See the text below for
a more detailed explanation. (Default: include these strate-
gies, i.e. true)

sampleDirect boolean Enable direct sampling strategies? his is a generalization
of direct illumination sampling that works with both emit-
ters and sensors. Usually a good idea. (Default: use direct
sampling, i.e. true)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

(a) Path tracer, 32 samples/pixel (b) Bidirectional path tracer, 32 samples/pixel

Figure 34: he bidirectional path tracer inds light paths by generating partial paths starting at the emitters
and the sensor and connecting them in every possible way. his works particularly well in closed
scenes as the one shown above. Here, the unidirectional path tracer has severe diiculties inding
some of the indirect illumination paths. Modeled ater ater a scene by Eric Veach.

his plugin implements a bidirectional path tracer (short: BDPT) with support for multiple impor-

tance sampling, as proposed by Veach and Guibas [44].

A bidirectional path tracer computes radiance estimates by starting two separate random walks

152

8. Plugin reference 8.10. Integrators

(a) s=0, t=3

(c) s=2, t=1

(b) s=1, t=2

(d) s=3, t=0

Figure 35: he four diferent ways in which BDPT can create a direct illumination path (matching the irst row
on the next page): (a) Standard path tracing without direct illumination sampling, (b) path tracing
with direct illumination sampling, (c) Particle tracing with recording of scattering events observed
by the sensor, (d) Particle tracing with recording of particles that hit the sensor.

from an emitter and a sensor. he resulting subpaths are connected at every possible interaction

vertex, creating a large number of complete paths of diferent lengths. hese paths are then used to

estimate the amount of radiance that is transferred from the emitter to a pixel on the sensor.

Generally, some of the created paths will be undesirable, since they lead to high-variance radiance

estimates. To alleviate this situation, BDPT makes use ofmultiple importance sampling which, roughly

speaking, weights paths based on their predicted utility.

he bidirectional path tracer in Mitsuba is a complete implementation of the technique that han-

dles all sampling strategies, including those that involve direct interactions with the sensor. For this

purpose, inite-aperture sensors are explicitly represented by surfaces in the scene so that they can be

intersected by random walks started at emitters.

Bidirectional path tracing is a relatively “heavy” rendering technique—for the same number of

samples per pixel, it is easily 3-4 times slower than regular path tracing. However, it usually makes

up for this by producing considerably lower-variance radiance estimates (i.e. the output images have

less noise).

he code parallelizes over multiple cores and machines, but with one caveat: some of the BDPT

path sampling strategies are incompatble with the usual approach of rendering an image tile by tile,

since they can potentially contribute to any pixel on the screen. his means that each rendering

work unit must be associated with a full-sized image! When network render nodes are involved

or the resolution of this light image is very high, a bottleneck can arise where more work is spent

accumulating or transmitting these images than actual rendering.

here are two possible resorts should this situation arise: the irst one is to reduce the number of

work units so that there is approximately one unit per core (and hence one image to transmit per core).

his can be done by increasing the block size in the GUI preferences or passing the -b parameter to

the mitsuba executable. he second option is to simply disable these sampling strategies at the cost

153

8. Plugin reference 8.10. Integrators

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(a) he individual sampling strategies that comprise BDPT, but without multiple importance sampling. s denotes the

number of steps taken from the emitters, and t denotes the number of steps from the sensor. Note how almost every

strategy has deiciencies of some kind

s=0, t=3 s=1, t=2 s=2, t=1 s=3, t=0

s=0, t=4 s=1, t=3 s=2, t=2 s=3, t=1 s=4, t=0

s=0, t=5 s=1, t=4 s=2, t=3 s=3, t=2 s=4, t=1 s=5, t=0

s=0, t=6 s=1, t=5 s=2, t=4 s=3, t=3 s=4, t=2 s=5, t=1 s=6, t=0

(b) he same sampling strategies, but now weighted using multiple importance sampling—efectively “turning of” each

strategy where it does not perform well. he inal result is computed by summing all of these images.

154

8. Plugin reference 8.10. Integrators

of reducing the efectiveness of bidirectional path tracing (particularly, when rendering caustics). For

this, setlightImage tofalse. When rendering an image of a reasonable resolution without network

nodes, this is not a big concern, hence these strategies are enabled by default.

Remarks:

• his integrator does not work with dipole-style subsurface scattering models.

• his integrator does not yet work with certain non-reciprocal BSDFs (i.e. bump, but this will be
addressed in the future

155

8. Plugin reference 8.10. Integrators

8.10.7. Photon map integrator (photonmapper)

Parameter Type Description

directSamples integer Number of samples used for the direct illumination compo-
nent (Default: 16)

glossySamples integer Number of samples used for the indirect illumination com-
ponent of glossy materials (Default: 32)

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

globalPhotons integer Number of photons that will be collected for the global pho-
ton map (Default: 250000)

causticPhotons integer Number of photons that will be collected for the caustic pho-
ton map (Default: 250000)

volumePhotons integer Number of photons that will be collected for the volumetric
photon map (Default: 250000)

globalLookup⤦
Radius

float Maximum radius of photon lookups in the global photon
map (relative to the scene size) (Default: 0.05)

causticLookup⤦
Radius

float Maximum radius of photon lookups in the caustic photon
map (relative to the scene size) (Default: 0.0125)

lookupSize integer Number of photons that should be fetched in photon map
queries (Default: 120)

granularity integer Granularity of photon tracing work units for the purpose of
parallelization (in # of shot particles) (Default: 0, i.e. decide
automatically)

hideEmitters boolean Hide directly visible emitters? See page 145 for details. (De-
fault: no, i.e. false)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

his plugin implements the two-pass photon mapping algorithm as proposed by Jensen [21]. he

implementation partitions the illumination into three diferent classes (difuse, caustic, and volumet-

ric), and builds a separate photon map for each class.

Following this, a standard recursive ray tracing pass is started which performs kernel density esti-

mation using these photon maps. Since the photon maps are visualized directly, the result will appear

“blotchy” (Figure 36) unless an extremely large number of photons is used. A simple remedy is to com-

bine the photon mapper with an irradiance cache, which performs inal gathering to remove these

artifacts. Due to its caching nature, the rendering process will be faster as well.

<integrator type="irrcache">

<integrator type="photonmapper"/>

</integrator>

156

8. Plugin reference 8.10. Integrators

Listing 34: Instantiation of a photon mapper with irradiance caching

(a) Rendered using plain photon mapping (b) Rendered using photon mapping together with irradi-

ance caching

Figure 36: Sponza atrium illuminated by a point light and rendered using 5 million photons. Irradiance
caching signiicantly accelerates the rendering time and eliminates the “blotchy” kernel density
estimation artifacts. Model courtesy of Marko Dabrovic.

When the scene contains participating media, the Beam Radiance Estimate [20] by Jarosz et al. is

used to estimate the illumination due to volumetric scattering.

Remarks:

• Currently, only homogeneous participating media are supported by this implementation

157

8. Plugin reference 8.10. Integrators

8.10.8. Progressive photon mapping integrator (ppm)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

photonCount integer Number of photons to be shot per iteration (Default:
250000)

initialRadius float Initial radius of gather points inworld space units. (Default:
0, i.e. decide automatically)

alpha float Radius reduction parameteralpha from the paper (Default:
0.7)

granularity integer Granularity of photon tracing work units for the purpose of
parallelization (in # of shot particles) (Default: 0, i.e. decide
automatically)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

his plugin implements the progressive photon mapping algorithm by Hachisuka et al. [14]. Pro-

gressive photon mapping is a variant of photon mapping that alternates between photon shooting and

gathering passes that involve a relatively small (e.g. 250K) numbers of photons that are subsequently

discarded.

his is done in a way such that the variance and bias of the resulting output vanish as the number of

passes tends to ininity. he progressive nature of this method enables renderings with an efectively

arbitrary number of photons without exhausting the available system memory.

he desired sample count speciied in the sample generator coniguration determines how many

photon query points are created per pixel. It should not be set too high, since the rendering time is

approximately proportional to this number. For good results, use between 2-4 samples along with the

ldsampler. Once started, the rendering process continues indeinitely until it is manually stopped.

Remarks:

• Due to the data dependencies of this algorithm, the parallelization is limited to to the localmachine
(i.e. cluster-wide renderings are not implemented)

• his integrator does not handle participating media

• his integrator does not currently work with subsurface scattering models.

158

8. Plugin reference 8.10. Integrators

8.10.9. Stochastic progressive photon mapping integrator (sppm)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

photonCount integer Number of photons to be shot per iteration (Default:
250000)

initialRadius float Initial radius of gather points inworld space units. (Default:
0, i.e. decide automatically)

alpha float Radius reduction parameteralpha from the paper (Default:
0.7)

granularity integer Granularity of photon tracing work units for the purpose of
parallelization (in # of shot particles) (Default: 0, i.e. decide
automatically)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

his plugin implements stochastic progressive photon mapping by Hachisuka et al. [13]. his

algorithm is an extension of progressive photon mapping (ppm) that improves convergence when

rendering scenes involving depth-of-ield, motion blur, and glossy relections.

Note that the implementation of sppm in Mitsuba ignores the sampler coniguration—hence, the

usual steps of choosing a sample generator and a desired number of samples per pixel are not nec-

essary. As with ppm, once started, the rendering process continues indeinitely until it is manually

stopped.

Remarks:

• Due to the data dependencies of this algorithm, the parallelization is limited to to the localmachine
(i.e. cluster-wide renderings are not implemented)

• his integrator does not handle participating media

• his integrator does not currently work with subsurface scattering models.

159

8. Plugin reference 8.10. Integrators

8.10.10. Primary Sample Space Metropolis Light Transport (pssmlt)

Parameter Type Description

bidirectional boolean PSSMLTworks in conjunction with another rendering tech-
nique that is endowed with Markov Chain-based sample
generation. Two choices are available (Default: true):

• true: Operate on top of a fully-leged bidirectional
path tracer with multiple importance sampling.

• false: Rely on a unidirectional volumetric path
tracer (i.e. volpath)

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

directSamples integer By default, this plugin renders the direct illumination com-
ponent separately using an optimized direct illumination
sampling strategy that uses low-discrepancy number se-
quences for superior performance (in other words, it is not
rendered by PSSMLT).his parameter speciies the number
of samples allocated to that method. To force PSSMLT to be
responsible for the direct illumination component as well,
set this parameter to -1. (Default: 16)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

luminanceSamples integer MLT-type algorithms create output images that are only rel-
ative. he algorithm can e.g. determine that a certain pixel
is approximately twice as bright as another one, but the ab-
solute scale is unknown. To recover it, this plugin computes
the average luminance arriving at the sensor by generating
a number of samples. (Default: 100000 samples)

twoStage boolean Use two-stageMLT? See below for details. (Default: false)

pLarge float Rate at which the implementation tries to replace the cur-
rent path with a completely new one. Usually, there is little
need to change this. (Default: 0.3)

Primary Sample Space Metropolis Light Transport (PSSMLT) is a rendering technique developed

by Kelemen et al. [26] which is based on Markov Chain Monte Carlo (MCMC) integration. In con-

trast to simple methods like path tracing that render images by performing a naïve and memoryless

random search for light paths, PSSMLT actively searches for relevant light paths (as is the case for

other MCMC methods). Once such a path is found, the algorithm tries to explore neighboring paths

to amortize the cost of the search. his can signiicantly improve the convergence rate of diicult

input. Scenes that were already relatively easy to render usually don’t beneit much from PSSMLT,

since the MCMC data management causes additional computational overheads.

An interesting aspect of PSSMLT is that it performs this exploration of light paths by perturbing the

160

8. Plugin reference 8.10. Integrators

(b) Path space view(a) Primary sample space view

Figure 37: PSSMLT piggybacks on a rendering method that can turn points in the primary sample space (i.e.
“random numbers”) into paths. By performing small jumps in primary sample space, it can explore
the neighborhood of a path

“random numbers” that were initially used to construct the path. Subsequent regeneration of the path

using the perturbed numbers yields a new path in a slightly diferent coniguration, and this process

repeats over and over again. he path regeneration step is fairly general and this is what makes the

method powerful: in particular, it is possible to use PSSMLT as a layer on top of an existing method

to create a new “metropolized” version of the rendering algorithm that is enhanced with a certain

degree of adaptiveness as described earlier.

he PSSMLT implementation in Mitsuba can operate on top of either a simple unidirectional vol-

umetric path tracer or a fully-ledged bidirectional path tracer with multiple importance sampling,

and this choice is controlled by the bidirectional lag. he unidirectional path tracer is generally

much faster, but it produces lower-quality samples. Depending on the input, either may be preferable.

Caveats: here are a few general caveats about MLT-type algorithms that are good to know. he

irst one is that they only render “relative” output images, meaning that there is a missing scale factor

that must be applied to obtain proper scene radiance values. he implementation in Mitsuba relies

on an additional Monte Carlo estimator to recover this scale factor. By default, it uses 100K samples

(controlled by the luminanceSamples parameter), which should be adequate for most applications.

he second caveat is that the amount of computational expense associated with a pixel in the output

image is roughly proportional to its intensity. his means that when a bright object (e.g. the sun) is

visible in a rendering, most resources are committed to rendering the sun disk at the cost of increased

variance everywhere else. Since this is usually not desired, the twoStage parameter can be used to

enable Two-stage MLT in this case.

In this mode of operation, the renderer irst creates a low-resolution version of the output image

to determine the approximate distribution of luminance values. he second stage then performs the

actual rendering, while using the previously collected information to ensure that the amount of time

spent rendering each pixel is uniform.

he third caveat is that, while PSMLT can work with scenes that are extremely diicult for other

methods to handle, it is not particularly eicient when rendering simple things such as direct illumi-

nation (which is more easily handled by a brute-force type algorithm). By default, the implementation

in Mitsuba therefore delegates this to such a method (with the desired quality being controlled by the

directSamples parameter). In very rare cases when direct illumination paths are very diicult to

ind, it is preferable to disable this separation so that PSSMLT is responsible for everything. his can

be accomplished by setting directSamples=-1.

161

8. Plugin reference 8.10. Integrators

8.10.11. Path Space Metropolis Light Transport (mlt)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

directSamples integer By default, the implementation renders direct illumina-
tion component separately using the direct plugin, which
uses low-discrepancy number sequences for superior per-
formance (in other words, it is not handled by MLT). his
parameter speciies the number of samples allocated to that
method. To force MLT to be responsible for the direct illu-
mination component as well, set this to -1. (Default: 16)

luminanceSamples integer MLT-type algorithms create output images that are only rel-
ative. he algorithm can e.g. determine that a certain pixel
is approximately twice as bright as another one, but the ab-
solute scale is unknown. To recover it, this plugin computes
the average luminance arriving at the sensor by generating
a number of samples. (Default: 100000 samples)

twoStage boolean Use two-stageMLT? Seepssmlt for details.(Default: false)

bidirectional⤦
Mutation,

[lens,multiChain,

caustic,manifold]⤦
Perturbation

boolean hese parameters can be used to pick the individual muta-
tion and perturbation strategies that will be used to explore
path space. By default, the original set by Veach and Guibas
is enabled (i.e. everything except the manifold perturba-
tion). It is possible to extend this integrator with additional
custom perturbations strategies if needed.

lambda float Jump size of the manifold perturbation (Default: 50)

Metropolis Light Transport (MLT) is a seminal rendering technique proposed by Veach and Guibas

[45], which applies the Metropolis-Hastings algorithm to the path-space formulation of light trans-

port. Please refer to the pssmlt page for a general description of MLT-type algorithms and a list of

caveats that also apply to this plugin.

Like pssmlt, this integrator explores the space of light paths, searching with preference for those

that carry a signiicant amount of energy from an emitter to the sensor. he main diference is that

PSSMLT does this exploration by piggybacking on another rendering technique and “manipulating”

the random number stream that drives it, whereas MLT does not use such an indirection: it operates

directly on the actual light paths.

his means that the algorithm has access to considerably more information about the problem

to be solved, which allows it to perform a directed exploration of certain classes of light paths. he

main downside is that the implementation is rather complex, which may make it more susceptible

to unforeseen problems. Mitsuba reproduces the full MLT algorithm except for the lens subpath

mutation18. In addition, the plugin also provides the manifold perturbation proposed by Jakob and

Marschner [19].

18In experiments, it was not found to produce sigiicant convergence improvements and was subsequently removed.

162

8. Plugin reference 8.10. Integrators

(a) Lens perturbation (b) Caustic perturbation

(c) Multi-chain perturbation (d) Manifold perturbation

To explore the space of light paths, MLT iteratively makes changes to a light path, which can either

be large-scale mutations or small-scale perturbations. Roughly speaking, the bidirectional mutation is

used to jump between diferent classes of light paths, and each one of the perturbations is responsible

for eiciently exploring some of these classes. All mutation and perturbation strategies can be mixed

and matched as desired, though for the algorithm to work properly, the bidirectional mutation must

be active and perturbations should be selected as required based on the types of light paths that are

present in the input scene. he following perturbations are available:

(a) Lens perturbation: this perturbation slightly varies the outgoing direction at the camera and prop-

agates the resulting ray until it encounters the irst non-specular object. he perturbation then

attempts to create a connection to the (unchanged) remainder of the path.

(b) Caustic perturbation: essentially a lens perturbation that proceeds in the opposite direction.

(c) Multi-chain perturbation: used when there are several chains of specular interactions, as seen

in the swimming pool example above. Ater an initial lens perturbation, a cascade of additional

perturbations is required until a connection to the remainder of the path can inally be established.

Depending on the path type, the entire path may be changed by this.

(d) Manifold perturbation: this perturbation was designed to subsume and extend the previous three

approaches. It creates a perturbation at an arbitrary position along the path, proceeding in either

direction. Upon encountering a chain of specular interactions, it numerically solves for a connec-

tion path (as opposed to the cascading mechanism employed by the multi-chain perturbation).

163

8. Plugin reference 8.10. Integrators

8.10.12. Energy redistribution path tracing (erpt)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

numChains float On average, how many Markov Chains should be started
per pixel? (Default: 1)

maxChains float How many Markov Chains should be started at most (per
pixel) (Default: 0, i.e. this feature is not used)

chainLength integer Speciies the number of perturbation steps that are executed
per Markov Chain (Default: 1).

directSamples integer By default, the implementation renders direct illumina-
tion component separately using the direct plugin, which
uses low-discrepancy number sequences for superior per-
formance (in other words, it is not handled by ERPT). his
parameter speciies the number of samples allocated to that
method. To force MLT to be responsible for the direct illu-
mination component as well, set this to -1. (Default: 16)

[lens,multiChain,

caustic,manifold]⤦
Perturbation

boolean hese parameters can be used to pick the individual pertur-
bation strategies that will be used to explore path space. By
default, the original set by Veach and Guibas is enabled (i.e.
everything except the manifold perturbation).

lambda float Jump size of the manifold perturbation (Default: 50)

(a) A brass chandelier with 24 glass-enclosed bulbs (b) Glossy relective and refractive ableware, lit by the

chandelier on the let

Figure 38: An interior scene with complex specular and near-specular light paths, illuminated entirely
through caustics. Rendered by this plugin using the manifold perturbation. his scene was de-
signed by Olesya Isaenko.

Energy Redistribution Path Tracing (ERPT) by Cline et al. [5] combines Path Tracing with the

perturbation strategies of Metropolis Light Transport.

An initial set of seed paths is generated using a standard bidirectional path tracer, and for each one,

a MLT-style Markov Chain is subsequently started and executed for some number of steps. his has

164

8. Plugin reference 8.10. Integrators

(a) Seed paths generated using bidirec-

tional path tracing. Note the high

variance of paths that involve relec-

tion of sunlight by the torus.

(b) Result ater running the perturba-

tions of Veach and Guibas for 800

steps. Some convergence issues re-

main.

(c) Result ater running the manifold

perturbation for the same amount

of time

the efect of redistributing the energy of the individual samples over a larger area, hence the name of

this method.

Figure 39: Another view, now
with exterior lighting.

his is oten a good choice when a (bidirectional) path tracer pro-

duces mostly reasonable results except that it inds certain important

types of light paths too rarely. ERPT can then explore all of the neigh-

borhing paths as well, to prevent the original sample from showing

up as a “bright pixel” in the output image.

his plugin shares all the perturbation strategies of the mlt plu-

gin, and the same rules for selecting them apply. In contrast to the

original paper by Cline et al., the Mitsuba implementation uses a bidi-

rectional (rather than an unidirectional) bidirectional path tracer to

create seed paths. Also, since they add bias to the output, this plu-

gin does not use the image post-processing ilters proposed by the

authors.

he mechanism for selecting Markov Chain seed paths deserves

an explanation: when commencing work on a pixel in the output

image, the integrator irst creates a pool of seed path candidates. he

size of this pool is given by the samplesPerPixel parameter of the

sample generator. his should be large enough so that the integrator

has a representative set of light paths to work with.

Subsequently, one or more of these candidates are chosen (deter-

mined by numChains and maxChains parameter). For each one, a

Markov Chain is created that has an initial coniguration matching the seed path. It is simulated for

chainLength iterations, and each intermediate state is recorded in the output image.

165

8. Plugin reference 8.10. Integrators

8.10.13. Adjoint particle tracer (ptracer)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to ∞). A value of 1 will only
render directly visible light sources. 2 will lead to single-
bounce (direct-only) illumination, and so on. (Default: -1)

rrDepth integer Speciies the minimum path depth, ater which the imple-
mentation will start to use the “russian roulette” path termi-
nation criterion. (Default: 5)

granularity integer Speciies the work unit granularity used to parallize the the
particle tracing task. his should be set high enough so
that accumulating partially exposed images (and potentially
sending them over the network) is not the bottleneck. (De-
fault: 200K particles per work unit, i.e. 200000)

bruteForce boolean If set to true, the integrator does not attempt to create con-
nections to the sensor and purely relies on hitting it via ray
tracing. his is mainly intended for debugging purposes.
(Default: false)

his plugin implements a simple adjoint particle tracer. It does essentially the exact opposite of

the simple volumetric path tracer (volpath_simple): instead of tracing rays from the sensor and

attempting to connect them to the light source, this integrator shoots particles from the light source

and attempts to connect them to the sensor.

Usually, this is a relatively useless rendering technique due to its high variance, but there are some

cases where it excels. In particular, it does a good job on scenes where most scattering events are

directly visible to the camera.

When rendering with a inite-aperture sensor (e.g. thinlens) this integrator is able to intersect

the actual aperture, which allows it to handle certain caustic paths that would otherwise not be visible.

It also supports a specialized “brute force” mode, where the integrator does not attempt to create

connections to the sensor and purely relies on hitting it via ray tracing. his is one of the worst con-

ceivable rendering and not recommended for any applications. It is mainly included for debugging

purposes.

he number of traced particles is given by the number of “samples per pixel” of the sample generator

times the pixel count of the output image. For instance, 16 samples per pixel on a 512×512 image will

cause 4M particles to be generated.

Remarks:

• his integrator does not currently work with subsurface scattering models.

166

8. Plugin reference 8.10. Integrators

8.10.14. Adaptive integrator (adaptive)

Parameter Type Description

maxError float Maximum relative error threshold (Default: 0.05)

pValue float Required p-value to accept a sample (Default: 0.05)

maxSampleFactor integer Maximumnumber of samples to be generated relative to the
number of conigured pixel samples. he adaptive integra-
tor will stop ater this many samples, regardless of whether
or not the error criterion was satisied. A negative value will
be interpreted as∞. (Default: 32—for instance, when 64
pixel samples are conigured in the sampler, this means
that the adaptive integrator will give up ater 32*64=2048
samples)

his “meta-integrator” repeatedly invokes a provided sub-integrator until the computed radiance

values satisfy a speciied relative error bound (5% by default) with a certain probability (95% by de-

fault). Internally, it uses a Z-test to decide when to stop collecting samples. While repeatedly applying

a Z-test in this manner is not good practice in terms of a rigorous statistical analysis, it provides a

useful mathematically motivated stopping criterion.

<integrator type="adaptive">

<integrator type="path"/>

</integrator>

Listing 35: An example how to make the path integrator adaptive

Remarks:

• he adaptive integrator needs a variance estimate to work correctly. Hence, the underlying sample
generator should be set to a reasonably large number of pixel samples (e.g. 64 or higher) so that
this estimate can be obtained.

• his plugin uses a relatively simplistic error heuristic that does not share information between
pixels and only reasons about variance in image space. In the future, it will likely be replaced with
something more robust.

167

8. Plugin reference 8.10. Integrators

8.10.15. Virtual Point Light integrator (vpl)

Parameter Type Description

maxDepth integer Speciies the longest path depth in the generated output im-
age (where -1 corresponds to∞). A value of 2 will lead to
direct-only illumination. (Default: 5)

shadowMap⤦
Resolution

integer Resolution of the shadowmaps that are used to compute the
point-to-point visibility (Default: 512)

clamping float A relative clamping factor between [0, 1] that is used to con-
trol the rendering artifact discussed below. (Default: 0.1)

his integrator implements a hardware-accelerated global illumination rendering technique based

on the Instant Radiosity method by Keller [27]. his is the same approach that is also used in Mitsuba’s

real-time preview; the reason for providing it as a separate integrator plugin is to enable automated

(e.g. scripted) usage.

he method roughly works as follows: during a pre-process pass, any present direct and indirect

illumination is converted into a set of virtual point light sources (VPLs). he scene is then separately

rendered many times, each time using a diferent VPL as a source of illumination. All of the render-

ings created in this manner are accumulated to create the inal output image.

Because the individual rendering steps can be exectuted on a graphics card, it is possible to render

many (i.e. 100-1000) VPLs per second. he method is not without problems, however. In particular,

it performs poorly when rendering glossy materials, and it produces artifacts in corners and creases .

Mitsuba automatically limits the “glossyness” of materials to reduce the efects of the former problem.

A clamping parameter is provided to control the latter (see the igure below). he number of samples

per pixel speciied to the sampler is interpreted as the number of VPLs that should be rendered.

(a) clamping=0: With clamping fully disabled, bright

blotches appear in corners and creases.

(b) clamping=0.3: Higher clamping factors remove

these artifacts, but they lead to visible energy loss (the

rendering is too dark in certain areas). he default of

0.1 is usually reasonable.

168

8. Plugin reference 8.10. Integrators

8.10.16. Irradiance caching integrator (irrcache)

Parameter Type Description

resolution integer Elevational resolution of the stratiied inal gather hemi-
sphere. he azimuthal resolution is two times this value.
(Default: 14, i.e. 2 ⋅ 142=392 samples in total)

quality float Quality factor (the κ parameter of Tabellion et al. [43]) (De-
fault: 1.0, which is adequate for most cases)

gradients boolean Use irradiance gradients [48]? (Default: true)

clampNeighbor boolean Use neighbor clamping [29]? (Default: true)

clampScreen boolean Use a screen-space clamping criterion [43]? (Default:
true)

overture boolean Do an overture pass before starting the main rendering pro-
cess? Usually a good idea. (Default: true)

quality⤦
Adjustment

float When an overture pass is used, Mitsuba subsequently re-
duces the quality parameter by this amount to interpolate
amongst more samples, creating a visually smoother result.
(Default: 0.5)

indirectOnly boolean Only show the indirect illumination? his can be useful to
check the interpolation quality. (Default: false)

debug boolean Visualize the sample placement? (Default: false)

(a) Illustration of the efect of the diferent optimizatations that are provided by this plugin

his “meta-integrator” implements irradiance caching by Ward and Heckbert [50]. his method

computes and caches irradiance information at a sparse set of scene locations and eiciently deter-

mines approximate values at other locations using interpolation.

his plugin only provides the caching and interpolation part—another plugin is still needed to do

the actual computation of irradiance values at cache points. his is done using nesting, e.g. as follows:

<integrator type="irrcache">

<integrator type="photonmapper"/>

</integrator>

Listing 36: Instantiation of a photon mapper with irradiance caching

When a radiance query involves a non-difuse material, all computation is forwarded to the sub-

169

8. Plugin reference 8.10. Integrators

integrator, i.e. irrcache is passive. Otherwise, the existing cache points are interpolated to approx-

imate the emitted radiance, or a new cache point is created if the resulting accuracy would be too

low. By default, this integrator also performs a distributed overture pass before rendering, which is

recommended to avoid artifacts resulting from the addition of samples as rendering proceeds.

Note that wrapping an integrator into irrcache adds one extra light bounce. For instance, the

method resulting from using direct in an irradiance cache renders two-bounce direct illumination.

he generality of this implementation allows it to be used in conjunction with photon mapping

(the most likely application) as well as all other sampling-based integrators in Mitsuba. Several opti-

mizations are used to improve the achieved interpolation quality, namely irradiance gradients [48],

neighbor clamping [29], a screen-space clamping metric and an improved error function [43].

170

8. Plugin reference 8.11. Sample generators

8.11. Sample generators

When rendering an image, Mitsuba has to solve a high-dimensional integration problem that involves

the geometry, materials, lights, and sensors that make up the scene. Because of the mathematical

complexity of these integrals, it is generally impossible to solve them analytically — instead, they are

solved numerically by evaluating the function to be integrated at a large number of diferent positions

referred to as samples. Sample generators are an essential ingredient to this process: they produce

points in a (hypothetical) ininite dimensional hypercube [0, 1]∞ that constitute the canonical repre-

sentation of these samples.

To do its work, a rendering algorithm, or integrator, will send many queries to the sample genera-

tor. Generally, it will request subsequent 1D or 2D components of this ininite-dimensional “point”

and map them into a more convenient space (for instance, positions on surfaces). his allows it to

construct light paths to eventually evaluate the low of light through the scene.

Since the whole process starts with a large number of points in the abstract space [0, 1]∞, it is

natural to consider diferent ways of positioning them. Desirable properties of a sampler are that

it “randomly” covers the whole space evenly with samples, but without placing samples too close to

each other. his leads to such notions as stratiied sampling and low-discrepancy number sequences.

he samplers in this section make diferent guarantees on the quality of generated samples based on

these criteria. To obtain intuition about their behavior, the provided point plots illustrate the resulting

sample placement.

171

8. Plugin reference 8.11. Sample generators

8.11.1. Independent sampler (independent)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the irst 1024 points onto the irst two

dimensions. Note the sample clumping.

he independent sampler produces a stream of independent and uniformly distributed pseudoran-

dom numbers. Internally, it relies on a fast SIMD version of the Mersenne Twister random number

generator [40].

his is the most basic sample generator; because no precautions are taken to avoid sample clumping,

images produced using this plugin will usually take longer to converge. In theory, this sampler is

initialized using a deterministic procedure, which means that subsequent runs of Mitsuba should

create the same image. In practice, when rendering with multiple threads and/or machines, this is

not true anymore, since the ordering of samples is inluenced by the operating system scheduler.

Note that the Metropolis-type integrators implemented in Mitsuba are incompatible with the more

sophisticated sample generators shown in this section. hey require this speciic sampler and refuse

to work otherwise.

172

8. Plugin reference 8.11. Sample generators

8.11.2. Stratiied sampler (stratified)

Parameter Type Description

sampleCount integer Number of samples per pixel; should be a perfect square (e.g.
1, 4, 9, 16, 25, etc.), or it will be rounded up to the next one
(Default: 4)

dimension integer Efective dimension, up to which stratiied samples are pro-
vided. he number here is to be interpreted as the number
of subsequent 1D or 2D sample requests that can be satis-
ied using “good” samples. Higher high values increase both
storage and computational costs. (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the irst 1024 points onto the irst two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) he same samples shown together with the underly-

ing strata for illustrative purposes

he stratiied sample generator divides the domain into a discrete number of strata and produces a

sample within each one of them. his generally leads to less sample clumping when compared to the

independent sampler, as well as better convergence. Due to internal storage costs, stratiied samples

are only provided up to a certain dimension, ater which independent sampling takes over.

Like the independent sampler, multicore and network renderings will generally produce diferent

images in subsequent runs due to the nondeterminism introduced by the operating system scheduler.

173

8. Plugin reference 8.11. Sample generators

8.11.3. Low discrepancy sampler (ldsampler)

Parameter Type Description

sampleCount integer Number of samples per pixel; should be a power of two (e.g.
1, 2, 4, 8, 16, etc.), or it will be rounded up to the next one
(Default: 4)

dimension integer Efective dimension, up to which low discrepancy samples
are provided. he number here is to be interpreted as the
number of subsequent 1D or 2D sample requests that can be
satisied using “good” samples. Higher high values increase
both storage and computational costs. (Default: 4)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the irst 1024 points onto the irst two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the irst 1024 points onto the 32 and

33th dimension, which look almost identical. How-

ever, note that the points have been scrambled to re-

duce correlations between dimensions.

his plugin implements a simple hybrid sampler that combines aspects of a Quasi-Monte Carlo se-

quence with a pseudorandom number generator based on a technique proposed by Kollig and Keller

[28]. It is a good and fast general-purpose sample generator and therefore chosen as the default option

in Mitsuba. Some of the QMC samplers in the following pages can generate even better distributed

samples, but this comes at a higher cost in terms of performance.

Roughly, the idea of this sampler is that all of the individual 2D sample dimensions are irst illed

using the same (0, 2)-sequence, which is then randomly scrambled and permuted using numbers

generated by a Mersenne Twister pseudorandom number generator [40]. Note that due to internal

storage costs, low discrepancy samples are only provided up to a certain dimension, ater which in-

dependent sampling takes over. he name of this plugin stems from the fact that (0, 2) sequences

minimize the so-called star disrepancy, which is a quality criterion on their spatial distribution. By

now, the name has become slightly misleading since there are other samplers in Mitsuba that just as

much try to minimize discrepancy, namely the sobol and halton plugins.

Like the independent sampler, multicore and network renderings will generally produce diferent

images in subsequent runs due to the nondeterminism introduced by the operating system scheduler.

174

8. Plugin reference 8.11. Sample generators

8.11.4. Halton QMC sampler (halton)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer his plugin can operate in one of three scrambling modes:

(i) When set to 0, the implementation will provide the
standard Halton sequence.

(ii) When set to -1, the implementation will compute a
scrambled variant of the Halton sequence based on
permutations by Faure [10], which has better equidis-
tribution properties in high dimensions.

(iii) When set to a value greater than one, a randompermu-
tation is chosen based on this number. his is useful
to break up temporally coherent noise when render-
ing the frames of an animation — in this case, simply
set the parameter to the current frame index.

Default: -1, i.e. use the Faure permutations. Note that per-
mutations rely on a precomputed table that consumes ap-
proximately 7 MiB of additional memory at run time.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Projection of the irst 1024 points of the Faure-

scrambled Halton seq. onto the irst two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Projection of the irst 1024 points of the Faure-

scrambled Halton seq. onto the 32th and 33th dim.

his plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Halton se-

quence. QMC number sequences are designed to reduce sample clumping across integration dimen-

sions, which can lead to a higher order of convergence in renderings. Because of the deterministic

character of the samples, errors will manifest as grid or moiré patterns rather than random noise, but

these diminish as the number of samples is increased.

he Halton sequence in particular provides a very high quality point set that unfortunately be-

comes increasingly correlated in higher dimensions. To ameliorate this problem, the Halton points

175

8. Plugin reference 8.11. Sample generators

are usually combined with a scrambling permutation, and this is also the default. Because everything

that happens inside this sampler is completely deterministic and independent of operating system

scheduling behavior, subsequent runs of Mitsuba will always compute the same image, and this even

holds when rendering with multiple threads and/or machines.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Aprojection of the irst 1024 points of the originalHal-

ton sequence onto the irst two dimensions, obtained

by setting scramble=0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the irst 1024 points of the original

Halton sequence onto the 32th and 33th dimensions.

Note the strong correlation – a scrambled sequence is

usually preferred to avoid this problem.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the irst 1024 points of a randomly

scrambled Halton sequence onto the irst two dimen-

sions (scramble=1).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the irst 1024 points of a randomly

scrambled Halton sequence onto the 32th and 33th di-

mensions.

By default, the implementation provides a scrambled variant of the Halton sequence based on

permutations by Faure [10] that has better equidistribution properties in high dimensions, but this

can be changed using the scramble parameter. Internally, the plugin uses a table of prime numbers

176

8. Plugin reference 8.11. Sample generators

to provide elements of the Halton sequence up to a dimension of 1024. Because of this upper bound,

the maximum path depth of the integrator must be limited (e.g. to 100), or rendering might fail with

the following error message: Lookup dimension exceeds the prime number table size! You may have to

reduce the ’maxDepth’ parameter of your integrator.

To support bucket-based renderings, the Halton sequence is internally enumerated using a scheme

proposed by Grünschloß et al. [12]; the implementation in Mitsuba is based on a Python script by

the authors of this paper.

Remarks:

• his sampler is incompatible withMetropolis Light Transport (all variants). It interoperates poorly
with Bidirectional Path Tracing and Energy Redistribution Path Tracing, hence these should not be
used together. he sobolQMC sequence is an alternative for the latter two cases, and ldsampler
works as well.

177

8. Plugin reference 8.11. Sample generators

8.11.5. Hammersley QMC sampler (hammersley)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer his plugin can operate in one of three scrambling modes:

(i) When set to 0, the implementation will provide the
standard Hammersley sequence.

(ii) When set to -1, the implementation will compute
a scrambled variant of the Hammersley sequence
based on permutations by Faure [10], which has bet-
ter equidistribution properties in high dimensions.

(iii) When set to a value greater than one, a randompermu-
tation is chosen based on this number. his is useful
to break up temporally coherent noise when render-
ing the frames of an animation — in this case, simply
set the parameter to the current frame index.

Default: -1, i.e. use the Faure permutations. Note that per-
mutations rely on a precomputed table that consumes ap-
proximately 7 MiB of additional memory at run time.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Projection of the irst 1024 points of the Faure-

scrambled sequence onto the irst two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Projection of the irst 1024 points of the Faure-

scrambled sequence onto the 32th and 33th dim.

his plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Hammers-

ley sequence. QMC number sequences are designed to reduce sample clumping across integration

dimensions, which can lead to a higher order of convergence in renderings. Because of the determin-

istic character of the samples, errors will manifest as grid or moiré patterns rather than random noise,

but these diminish as the number of samples is increased.

he Hammerlsey sequence is closely related to the Halton sequence and yields a very high quality

point set that is slightly more regular (and has lower discrepancy), especially in the irst few dimen-

178

8. Plugin reference 8.11. Sample generators

sions. As is the case with the Halton sequence, the points should be scrambled to reduce patterns

that manifest due due to correlations in higher dimensions. Please refer to the halton page for more

information on how this works.

Note that this sampler will cause odd-looking intermediate results when combined with rendering

techniques that trace paths starting at light source (e.g. ptracer)—these vanish by the time the

rendering process inishes.

Remarks:

• his sampler is incompatible withMetropolis Light Transport (all variants). It interoperates poorly
with Bidirectional Path Tracing and Energy Redistribution Path Tracing, hence these should not be
used together. he sobolQMC sequence is an alternative for the latter two cases, and ldsampler
works as well.

179

8. Plugin reference 8.11. Sample generators

8.11.6. Sobol QMC sampler (sobol)

Parameter Type Description

sampleCount integer Number of samples per pixel (Default: 4)

scramble integer his parameter can be used to set a scramble value to break
up temporally coherent noise patterns. For stills, this is ir-
relevant. When rendering an animation, simply set it to the
current frame index. (Default: 0)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) A projection of the irst 1024 points onto the irst two

dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) A projection of the irst 1024 points onto the 32 and

33th dimension.

his plugin implements a Quasi-Monte Carlo (QMC) sample generator based on the Sobol se-

quence. QMC number sequences are designed to reduce sample clumping across integration dimen-

sions, which can lead to a higher order of convergence in renderings. Because of the deterministic

character of the samples, errors will manifest as grid or moiré patterns rather than random noise, but

these diminish as the number of samples is increased.

he Sobol sequence in particular provides a relatively good point set that can be computed ex-

tremely eiciently. One downside is the susceptibility to pattern artifacts in the generated image. To

minimize these artifacts, it is advisable to use a number of samples per pixel that is a power of two.

Because everything that happens inside this sampler is completely deterministic and independent

of operating system scheduling behavior, subsequent runs of Mitsuba will always compute the same

image, and this even holds when rendering with multiple threads and/or machines.

he plugin relies on a fast implementation of the Sobol sequence by Leonhard Grünschloß using

direction numbers provided by Joe and Kuo [24]. hese direction numbers are given up to a dimen-

sion of 1024. Because of this upper bound, the maximum path depth of the integrator must be limited

(e.g. to 100), or rendering might fail with the following error message: Lookup dimension exceeds the

direction number table size! You may have to reduce the ’maxDepth’ parameter of your integrator.

Note that this sampler generates a (0, 2)-sequence in the irst two dimensions, and therefore the

point plot shown in (a) happens to match the corresponding plots of ldsampler. In higher dimen-

sions, however, they behave rather diferently.

180

8. Plugin reference 8.11. Sample generators

When this sampler is used to perform parallel block-based renderings, the sequence is internally

enumerated using a scheme proposed and implemented by Grünschloß et al. [12].

Remarks:

• his sampler is incompatible with Metropolis Light Transport (all variants).

181

8. Plugin reference 8.12. Films

8.12. Films

A ilm deines how conducted measurements are stored and converted into the inal output ile that

is written to disk at the end of the rendering process. Mitsuba comes with a few ilms that can write

to high and low dynamic range image formats (OpenEXR, JPEG or PNG), as well more scientiically

oriented data formats (e.g. MATLAB or Mathematica).

In the XML scene description language, a normal ilm coniguration might look as follows

<scene version="0.4.4">

<!-- ... scene contents ... -->

<sensor type="... sensor type ...">

<!-- ... sensor parameters ... -->

<!-- Write to a high dynamic range EXR image -->

<film type="hdrfilm">

<!-- Specify the desired resolution (e.g. full HD) -->

<integer name="width" value="1920"/>

<integer name="height" value="1080"/>

<!-- Use a Gaussian reconstruction filter. For

details on these, refer to the next subsection -->

<rfilter type="gaussian"/>

</film>

</sensor>

</scene>

he film plugin should be instantiated nested inside a sensor declaration. Note how the output

ilename is never speciied—it is automatically inferred from the scene ilename and can be manually

overridden by passing the coniguration parameter -o to the mitsuba executable when rendering

from the command line.

182

8. Plugin reference 8.12. Films

8.12.1. High dynamic range ilm (hdrfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:
768, 576)

fileFormat string Denotes the desired output ile format. he options are
openexr (for ILM’s OpenEXR format), rgbe (for Greg
Ward’s RGBE format), or pfm (for the Portable Float Map
format) (Default: openexr)

pixelFormat string Speciies the desired pixel format for OpenEXR output im-
ages. he options are luminance, luminanceAlpha, rgb,
rgba, xyz, xyza, spectrum, and spectrumAlpha. In the
latter two cases, the number of written channels depends on
the value assigned to SPECTRUM_SAMPLES during compila-
tion (see Section 4 section for details) (Default: rgb)

componentFormat string Speciies the desired loating point component format used
for OpenEXR output. he options are float16, float32,
or uint32. (Default: float16)

cropOffsetX,

cropOffsetY,

cropWidth,

cropHeight

integer hese parameters can optionally be provided to select a sub-
rectangle of the output. In this case, Mitsuba will only ren-
der the requested regions. (Default: Unused)

attachLog boolean Mitsuba can optionally attach the entire rendering log ile
as a metadata ield so that this information is permanently
saved. (Default: true, i.e. attach it)

banner boolean Include a small Mitsuba banner in the output image? (De-
fault: true)

highQualityEdges boolean If set to true, regions slightly outside of the ilm plane will
also be sampled. his may improve the image quality at the
edges, especially when using very large reconstruction il-
ters. In general, this is not needed though. (Default: false,
i.e. disabled)

(Nested plugin) rfilter Reconstruction ilter that should be used by the ilm. (De-
fault: gaussian, a windowed Gaussian ilter)

his is the default ilm plugin that is used when none is explicitly speciied. It stores the captured

image as a high dynamic range OpenEXR ile and tries to preserve the rendering as much as possible

by not performing any kind of post processing, such as gamma correction—the output ile will record

linear radiance values.

When writing OpenEXR iles, the ilm will either produce a luminance, luminance/alpha, RGB(A),

XYZ(A) tristimulus, or spectrum/spectrum-alpha-based bitmap having a float16, float32, or

uint32-based internal representation based on the chosen parameters. he default coniguration

is RGB with a float16 component format, which is appropriate for most purposes. Note that the

spectral output options only make sense when using a custom build of Mitsuba that has spectral

rendering enabled. his is not the case for the downloadable release builds.

183

8. Plugin reference 8.12. Films

he plugin can also write RLE-compressed iles in the Radiance RGBE format pioneered by Greg

Ward (set fileFormat=rgbe), as well as the Portable Float Map format (set fileFormat=pfm). In

the former case, the componentFormat and pixelFormat parameters are ignored, and the output

is “float8”-compressed RGB data. PFM output is restricted to float32-valued images using the

rgb or luminance pixel formats. Due to the superior accuracy and adoption of OpenEXR, the use

of these two alternative formats is discouraged however.

When RGB(A) output is selected, the measured spectral power distributions are converted to linear

RGB based on the CIE 1931 XYZ color matching curves and the ITU-R Rec. BT.709-3 primaries with

a D65 white point.

<film type="hdrfilm">

<string name="pixelFormat" value="rgba"/>

<integer name="width" value="1920"/>

<integer name="height" value="1080"/>

<boolean name="banner" value="false"/>

</film>

Listing 37: Instantiation of a ilm that writes a full-HD RGBA OpenEXR ile without the Mitsuba banner

Render-time annotations:

he ldrfilm and hdrfilm plugins support a feature referred to as render-time annotations to facil-

itate record keeping. Annotations are used to embed useful information inside a rendered image so

that this information is later available to anyone viewing the image. Exemplary uses of this feature

might be to store the frame or take number, rendering time, memory usage, camera parameters, or

other relevant scene information.

Currently, two diferent types are supported: a metadata annotation creates an entry in the meta-

data table of the image, which is preferable when the image contents should not be touched. Alterna-

tively, a label annotation creates a line of text that is overlaid on top of the image. Note that this is

only visible when opening the output ile (i.e. the line is not shown in the interactive viewer). he

syntax of this looks as follows:

<film type="hdrfilm">

<!-- Create a new metadata entry 'my_tag_name' and set it to the

value 'my_tag_value' -->

<string name="metadata['key_name']" value="Hello!"/>

<!-- Add the label 'Hello' at the image position X=50, Y=80 -->

<string name="label[50, 80]" value="Hello!"/>

</film>

he value="..." argument may also include certain keywords that will be evaluated and substi-

tuted when the rendered image is written to disk. A list all available keywords is provided in Table 6.

Apart from querying the render time, memory usage, and other scene-related information, it is

also possible to ‘paste’ an existing parameter that was provided to another plugin—for instance,the

the camera transform matrix would be obtained as $sensor[’toWorld’]. he name of the active

integrator plugin is given by $integrator[’type’], and so on. All of these can be mixed to build

larger fragments, as following example demonstrates. he result of this annotation is shown in Fig-

ure 40.

184

8. Plugin reference 8.12. Films

<string name="label[10, 10]" value="Integrator: $integrator['type'],

$film['width']x$film['height'], $sampler['sampleCount'] spp,

render time: $scene['renderTime'], memory: $scene['memUsage']"/>

Figure 40: A demonstration of the label annotation feature given the example string shown above.

$scene[’renderTime’] Image render time, use renderTimePrecise for more digits.

$scene[’memUsage’] Mitsuba memory usage19. Use memUsagePrecise for more digits.

$scene[’coreCount’] Number of local and remote cores working on the rendering job

$scene[’blockSize’] Block size used to parallelize up the rendering workload

$scene[’sourceFile’] Source ile name

$scene[’destFile’] Destination ile name

$integrator[’..’] Copy a named integrator parameter

$sensor[’..’] Copy a named sensor parameter

$sampler[’..’] Copy a named sampler parameter

$film[’..’] Copy a named ilm parameter

Table 6: A list of all special keywords supported by the annotation feature

185

8. Plugin reference 8.12. Films

8.12.2. Tiled high dynamic range ilm (tiledhdrfilm)

Parameter Type Description

width, height integer Width and height of the camera sensor in pixels (Default:
768, 576)

cropOffsetX,

cropOffsetY,

cropWidth,

cropHeight

integer hese parameters can optionally be provided to select a sub-
rectangle of the output. In this case, Mitsuba will only ren-
der the requested regions. (Default: Unused)

pixelFormat string Speciies the desired pixel format for OpenEXR output im-
ages. he options are luminance, luminanceAlpha, rgb,
rgba, xyz, xyza, spectrum, and spectrumAlpha. In the
latter two cases, the number of written channels depends on
the value assigned to SPECTRUM_SAMPLES during compila-
tion (see Section 4 section for details) (Default: rgb)

componentFormat string Speciies the desired loating point component format used
for the output. he options are float16, float32, or
uint32 (Default: float16)

(Nested plugin) rfilter Reconstruction ilter that should be used by the ilm. (De-
fault: gaussian, a windowed Gaussian ilter)

his plugin implements a camera ilm that stores the captured image as a tiled high dynamic-range

OpenEXR ile. It is very similar to hdrfilm, the main diference being that it does not keep the

rendered image in memory. Instead, image tiles are directly written to disk as they are being rendered,

which enables renderings of extremely large output images that would otherwise not it into memory

(e.g. 100K×100K).

When the image can it into memory, usage of this plugin is discouraged: due to the extra overhead

of tracking image tiles, the rendering process will be slower, and the output iles also generally do not

compress as well as those produced by hdrfilm.

Based on the provided parameter values, the ilm will either write a luminance, luminance/al-

pha, RGB(A), XYZ(A) tristimulus, or spectrum/spectrum-alpha-based bitmap having a float16,

float32, or uint32-based internal representation. he default is RGB and float16. Note that the

spectral output options only make sense when using a custom compiled Mitsuba distribution that

has spectral rendering enabled. his is not the case for the downloadable release builds.

When RGB output is selected, the measured spectral power distributions are converted to linear

RGB based on the CIE 1931 XYZ color matching curves and the ITU-R Rec. BT.709 primaries with a

D65 white point.

Remarks:

• his ilm is only meant for command line-based rendering. When used with mtsgui, the preview
image will be black.

• his plugin is slower than hdrfilm, and therefore should only be used when the output image is
too large to it into system memory.

186

8. Plugin reference 8.12. Films

8.12.3. Low dynamic range ilm (ldrfilm)

Parameter Type Description

width, height integer Camera sensor resolution in pixels (Default: 768, 576)

fileFormat integer hedesired output ile format: png or jpeg. (Default: png)

pixelFormat string Speciies the pixel format of the generated image. he op-
tions are luminance, luminanceAlpha, rgb or rgba for
PNG output and rgb or luminance for JPEG output.

tonemapMethod string Method used to tonemap recorded radiance values

(i) gamma: Exposure and gamma correction (default)

(ii) reinhard: Apply the the tonemapping technique by
Reinhard et al. [39] followd by gamma correction.

gamma float he gamma curve applied to correct the output image,
where the special value -1 indicates sRGB. (Default: -1)

exposure float When gamma tonemapping is active, this parameter speci-
ies an exposure factor in f-stops that is applied to the im-
age before gamma correction (scaling the radiance values
by 2 exposure). (Default: 0, i.e. do not change the exposure)

key float When reinhard tonemapping is active, this parameter in
(0, 1∥ speciies whether a low-key or high-key image is de-
sired. (Default: 0.18, corresponding to a middle-grey)

burn float When reinhard tonemapping is active, this parameter in
[0, 1] speciies howmuch highlights can burn out. (Default:
0, i.e. map all luminance values into the displayable range)

banner boolean Include a banner in the output image? (Default: true)

cropOffsetX,

cropOffsetY,

cropWidth,

cropHeight

integer hese parameters can optionally be provided to select a sub-
rectangle of the output. In this case, Mitsuba will only ren-
der the requested regions. (Default: Unused)

highQualityEdges boolean If set to true, regions slightly outside of the ilm plane will
also be sampled. his may improve image quality at the
edges, but is not needed in general. (Default: false)

(Nested plugin) rfilter Reconstruction ilter that should be used by the ilm. (De-
fault: gaussian, a windowed Gaussian ilter)

his plugin implements a low dynamic range ilm that can write out 8-bit PNG and JPEG images

in various conigurations. It provides basic tonemapping techniques to map recorded radiance values

into a reasonable displayable range. An alpha (opacity) channel can be written if desired. By default,

the plugin writes gamma-corrected PNG iles using the sRGB color space and no alpha channel.

his ilm is a good choice when low dynamic range output is desired and the rendering setup can be

conigured to capture the relevant portion of the dynamic range reliably enough so that the original

HDR data can safely be discarded. When this is not the case, it may be easier to use hdrfilm along

with the batch tonemapper (Section 5.4.1).

187

8. Plugin reference 8.12. Films

By default, the plugin assumes that no special tonemapping needs to be done and simply applies an

exposure multiplier and sRGB gamma curve to the recorded radiance values before converting them

to 8 bit. When the dynamic range varies greatly, it may be preferable to use the photographic tonemap-

ping technique by Reinhard et al. [39], which can be activated by setting tonemapMethod=reinhard.

Note that the interactive tonemapper that is available in the graphical user interface mtsgui in-

teroperates with this plugin. In particular, when saving the scene (File→Save), the currently active

tonemapper settings are automatically exported into the updated scene ile.

he RGB values exported by this plugin correspond to the ITU-R Rec. BT. 709-3 primaries with

a D65 white point. When gamma is set to -1 (the default), the output is in the sRGB color space and

will display as intended on compatible devices.

Note that this plugin supports render-time annotations, which are described on page 184.

188

8. Plugin reference 8.12. Films

8.12.4. MATLAB / Mathematica ilm (mfilm)

Parameter Type Description

width, height integer Width and height of the sensor in pixels (Default: 1, 1)

cropOffsetX,

cropOffsetY,

cropWidth,

cropHeight

integer hese parameters can optionally be provided to select a sub-
rectangle of the output. In this case, Mitsuba will only ren-
der the requested regions. (Default: Unused)

fileFormat string Speciies the desired output format; must be one of matlab
or mathematica. (Default: matlab)

digits integer Number of signiicant digits to be written (Default: 4)

variable string Name of the target variable (Default: "data")

pixelFormat string Speciies the desired pixel format of the generated image.
he options are luminance, luminanceAlpha, rgb, rgba,
spectrum, and spectrumAlpha. In the latter two cases,
the number of written channels depends on the value as-
signed to SPECTRUM_SAMPLES during compilation (see Sec-
tion 4 section for details) (Default: rgba)

highQualityEdges boolean If set to true, regions slightly outside of the ilm plane will
also be sampled. his may improve the image quality at the
edges, especially when using very large reconstruction il-
ters. In general (andparticularly using the default boxilter),
this is not needed though. (Default: false, i.e. disabled)

(Nested plugin) rfilter Reconstruction ilter that should be used by the ilm. (De-
fault: box, a simple box ilter)

(a) Importing and tonemapping an image inMathematica

his plugin provides a camera ilm that exports spectrum, RGB, XYZ, or luminance values as a

matrix to a MATLAB or Mathematica ASCII ile. his is useful when running Mitsuba as simulation

step as part of a larger virtual experiment. It can also come in handy when verifying parts of the

renderer using an automated test suite.

189

8. Plugin reference 8.13. Reconstruction filters

8.13. Reconstruction ilters

Image reconstruction ilters are responsible for converting a series of radiance samples generated

jointly by the sampler and integrator into the inal output image that will be written to disk at the

end of a rendering process. his section gives a brief overview of the reconstruction ilters that are

available in Mitsuba. here is no universally superior ilter, and the inal choice depends on a trade-of

between sharpness, ringing, and aliasing, and computational eiciency.

Desireable properties of a reconstruction ilter are that it sharply captures all of the details that

are displayable at the requested image resolution, while avoiding aliasing and ringing. Aliasing is

the incorrect leakage of high-frequency into low-frequency detail, and ringing denotes oscillation

artifacts near discontinuities, such as a light-shadow transiton.

Box ilter (box): the fastest, but also about the worst possible reconstruction ilter, since it is ex-

tremely prone to aliasing. It is included mainly for completeness, though some rare situations

may warrant its use.

Tent ilter (tent): Simple tent, or triangle ilter. his reconstruction ilter never sufers from ringing

and usually causes less aliasing than a naive box ilter. When rendering scenes with sharp bright-

ness discontinuities, this may be useful; otherwise, negative-lobed ilters will be preferable (e.g.

Mitchell-Netravali or Lanczos Sinc)

Gaussian ilter (gaussian): this is a windowed Gaussian ilter with conigurable standard deviation.

It produces pleasing results and never sufers from ringing, but may occasionally introduce too

much blurring. When no reconstruction ilter is explicitly requested, this is the default choice

in Mitsuba.

Mitchell-Netravali ilter (mitchell): Separable cubic spline reconstruction ilter by Mitchell and

Netravali [32] his is oten a good compromise between sharpness and ringing.

he plugin has two float-valued parameters named B and C that correspond to the two pa-

rameters in the original research paper. By default, these are set to the recommended value of

1/3, but can be tweaked if desired.

Catmull-Rom ilter (catmullrom): his is a special version of the Mitchell-Netravali ilter that has

the constants B and C adjusted to produce higher sharpness at the cost of increased susceptibil-

ity to ringing.

Lanczos Sinc ilter (lanczos): his is a windowed version of the theoretically optimal low-pass il-

ter. It is generally one of the best available ilters in terms of producing sharp high-quality

output. Its main disadvantage is that it produces strong ringing around discontinuities, which

can become a serious problem when rendering bright objects with sharp edges (for instance, a

directly visible light source will have black fringing artifacts around it). his is also the compu-

tationally slowest reconstruction ilter.

his plugin has an integer-valued parameter named lobes, that sets the desired number of

ilter side-lobes. he higher, the closer the ilter will approximate an optimal low-pass ilter, but

this also increases the susceptibility to ringing. Values of 2 or 3 are common (3 is the default).

he next section contains a series of comparisons between reconstruction ilters. In the irst case,

a very high-resolution input image (corresponding to a hypothetical radiance ield incident at the

camera) is reconstructed at low resolutions.

190

8. Plugin reference 8.13. Reconstruction filters

8.13.1. Reconstruction ilter comparison 1: frequency attenuation and aliasing

Here, a high frequency function is reconstructed at low resolutions. A good ilter (e.g. Lanczos Sinc)

will capture all oscillations that are representable at the desired resolution and attenuate the remainder

to a uniform gray. he ilters are ordered by their approximate level of success at this benchmark.

(a) A high resolution input image whose frequency

decreases towards the borders. If you are looking

at this on a computer, you may have to zoom in.

(a) Box ilter (b) Tent ilter (c) Gaussian ilter

(d) Mitchell-Netravali ilter (e) Catmull-Rom ilter (f) Lanczos Sinc ilter

191

8. Plugin reference 8.13. Reconstruction filters

8.13.2. Reconstruction ilter comparison 2: ringing

his comparison showcases the ringing artifacts that can occur when the rendered image contains

extreme and discontinuous brightness transitions. he Mitchell-Netravali, Catmull-Rom, and Lanc-

zos Sinc ilters are afected by this problem. Note the black fringing around the light source in the

cropped Cornell box renderings below.

(a) Box ilter (b) Tent ilter

(c) Gaussian ilter (d) Mitchell-Netravali ilter

(e) Catmull-Rom ilter (f) Lanczos Sinc ilter

8.13.3. Specifying a reconstruction ilter

To specify a reconstruction ilter, it must be instantiated inside the sensor’s ilm. Below is an example:

<scene version="0.4.4">

<!-- ... scene contents ... -->

<sensor type="... sensor type ...">

<!-- ... sensor parameters ... -->

<film type="... film type ...">

<!-- ... film parameters ... -->

<!-- Instantiate a Lanczos Sinc filter with two lobes -->

<rfilter type="lanczos">

<integer name="lobes" value="2"/>

</rfilter>

</film>

</sensor>

</scene>

192

10. Coding style

Part II.

Development guide

his chapter and the subsequent ones will provide an overview of the the coding conventions and

general architecture of Mitsuba. You should only read them if if you wish to interface with the API

in some way (e.g. by developing your own plugins). he coding style section is only relevant if you

plan to submit patches that are meant to become part of the main codebase.

9. Code structure

Mitsuba is split into four basic support libraries:

• he core library (libcore) implements basic functionality such as cross-platform ile and

bitmap I/O, data structures, scheduling, as well as logging and plugin management.

• he rendering library (librender) contains abstractions needed to load and represent scenes

containing light sources, shapes, materials, and participating media.

• he hardware acceleration library (libhw) implements a cross-platform display library, an

object-oriented OpenGL wrapper, as well as support for rendering interactive previews of scenes.

• Finally, the bidirectional library (libbidir) contains a support layer that is used to implement

bidirectional rendering algorithms such as Bidirectional Path Tracing and Metropolis Light

Transport.

A detailed reference of these APIs is available at http://www.mitsuba-renderer.org/api. he

next sections present a few basic examples to get familiar with them.

10. Coding style

Indentation: he Mitsuba codebase uses tabs for indentation, which expand to four spaces. Please

make sure that you conigure your editor this way, otherwise the source code layout will look garbled.

Placement of braces: Opening braces should be placed on the same line to make the best use of

vertical space, i.e.

if (x > y) {

x = y;

}

Placement of spaces: Placement of spaces follows K&R, e.g.

if (x == y) {

..

} else if (x > y) {

..

193

http://www.mitsuba-renderer.org/api

10. Coding style 10. Coding style

} else {

..

}

rather than things like this

if (x==y){

}

..

Name format: Names are always written in camel-case. Classes and structures start with a capital

letter, whereas member functions and attributes start with a lower-case letter. Attributes of classes

have the preix m_. Here is an example:

class MyClass {

public:

MyClass(int value) : m_value(value) { }

inline void setValue(int value) { m_value = value; }

inline int getValue() const { return m_value; }

private:

int m_value;

};

Enumerations: For clarity, both enumerations types and entries start with a capital E, e.g.

enum ETristate {

ENo = 0,

EYes,

EMaybe

};

Constant methods and parameters: Declare member functions and their parameters as const

whenever this is possible and properly conveys the semantics.

Inline methods: Always inline trivial pieces of code, such as getters and setters.

Documentation: Headers iles should contain Doxygen-compatible documentation. It is also a

good idea to add comments to a .cppile to explain subtleties of an implemented algorithm. However,

anything pertaining to the API should go into the header ile.

Boost: Use the boost libraries whenever this helps to save time or write more compact code.

Classes vs structures: In Mitsuba, classes usually go onto the heap, whereas structures may be allo-

cated both on the stack and the heap.

Classes that derive from Object implement a protected virtual deconstructor, which explicitly

prevents them from being allocated on the stack. he only way they can be deallocated is using the

built-in reference counting. his is done using the ref<> template, e.g.

194

10. Coding style 10. Coding style

if (..) {

ref<MyClass> instance = new MyClass();

instance->doSomething()

} // reference expires, instance will be deallocated

Separation of plugins: Mitsuba encourages that plugins are only used via the generic interface they

implement. You will ind that almost all plugins (e.g. emitters) don’t actually provide a header ile,

hence they can only be accessed using the generic Emitter interface they implement. If any kind of

special interaction between plugins is needed, this is usually an indication that the generic interface

should be extended to accomodate this.

195

11. Designing a custom integrator plugin 11. Designing a custom integrator plugin

11. Designing a custom integrator plugin

Suppose you want to design a custom integrator to render scenes in Mitsuba. here are two general

ways you can do this, and which one you should take mostly depends on the characteristics of your

particular integrator.

he framework distinguishes between sampling-based integrators and generic ones. A sampling-

based integrator is able to generate (usually unbiased) estimates of the incident radiance along a spec-

iied rays, and this is done a large number of times to render a scene. A generic integrator is more like

a black box, where no assumptions are made on how the the image is created. For instance, the VPL

renderer uses OpenGL to rasterize the scene using hardware acceleration, which certainly doesn’t it

into the sampling-based pattern. For that reason, it must be implemented as a generic integrator.

Generally, if you can package up your code to it into the SamplingIntegrator interface, you

should do it, because you’ll get parallelization and network rendering essentially for free. his is done

by transparently sending instances of your integrator class to all participating cores and assigning

small image blocks for each one to work on. Also, sampling-based integrators can be nested within

some other integrators, such as an irradiance cache or an adaptive integrator. his cannot be done

with generic integrators due to their black-box nature. Note that it is oten still possible to parallelize

generic integrators, but this involves signiicantly more work.

In this section, we’ll design a rather contrived sampling-based integrator, which renders a monochro-

matic image of your scene, where the intensity denotes the distance to the camera. But to get a feel

for the overall framework, we’ll start with an even simpler one, that just renders a solid-color image.

11.1. Basic implementation

In Mitsuba’s src/integrators directory, create a ile named myIntegrator.cpp.

#include <mitsuba/render/scene.h>

MTS_NAMESPACE_BEGIN

class MyIntegrator : public SamplingIntegrator {

public:

MTS_DECLARE_CLASS()

};

MTS_IMPLEMENT_CLASS_S(MyIntegrator, false, SamplingIntegrator)

MTS_EXPORT_PLUGIN(MyIntegrator, "A contrived integrator");

MTS_NAMESPACE_END

he scene.h header ile contains all of the dependencies we’ll need for now. To avoid conlicts with

other libraries, the whole framework is located in a separate namespace named mitsuba, and the

lines starting with MTS_NAMESPACE ensure that our integrator is placed there as well.

he two lines starting with MTS_DECLARE_CLASS and MTS_IMPLEMENT_CLASS ensure that this

class is recognized as a native Mitsuba class. his is necessary to get things like run-time type infor-

mation, reference counting, and serialization/unserialization support. Let’s take a look at the second

of these lines, because it contains several important pieces of information:

he suix S in MTS_IMPLEMENT_CLASS_S speciies that this is a serializable class, which means

that it can be sent over the network or written to disk and later restored. hat also implies that certain

methods need to be provided by the implementation — we’ll add those in a moment.

196

11. Designing a custom integrator plugin 11.1. Basic implementation

he three following parameters specify the name of this class (MyIntegrator), the fact that it is

not an abstract class (false), and the name of its parent class (SamplingIntegrator).

Just below, you can see a line that starts with MTS_EXPORT_PLUGIN. As the name suggests, this line

is only necessary for plugins, and it ensures that the speciied class (MyIntegrator) is what you want

to be instantiated when somebody loads this plugin. It is also possible to supply a short descriptive

string.

Let’s add an instance variable and a constructor:

public:

/// Initialize the integrator with the specified properties

MyIntegrator(const Properties &props) : SamplingIntegrator(props) {

Spectrum defaultColor;

defaultColor.fromLinearRGB(0.2f, 0.5f, 0.2f);

m_color = props.getSpectrum("color", defaultColor);

}

private:

Spectrum m_color;

his code fragment sets up a default color (a light shade of green), which can be overridden from

the scene ile. For example, one could instantiate the integrator from an XML document like this

<integrator type="myIntegrator">

<spectrum name="color" value="1.0"/>

</integrator>

in which case white would take preference.

Next, we need to add serialization and unserialization support:

/// Unserialize from a binary data stream

MyIntegrator(Stream *stream, InstanceManager *manager)

: SamplingIntegrator(stream, manager) {

m_color = Spectrum(stream);

}

/// Serialize to a binary data stream

void serialize(Stream *stream, InstanceManager *manager) const {

SamplingIntegrator::serialize(stream, manager);

m_color.serialize(stream);

}

his makes use of a stream abstraction similar in style to Java. A stream can represent various things,

such as a ile, a console session, or a network communication link. Especially when dealing with

multiple machines, it is important to realize that the machines may use diferent binary represen-

tations related to their respective endianness. To prevent issues from arising, the Stream interface

provides many methods for writing and reading small chunks of data (e.g. writeShort, readFloat,

..), which automatically perform endianness translation. In our case, the Spectrum class already pro-

vides serialization/unserialization support, so we don’t really have to do anything.

Note that it is crucial that your code calls the serialization and unserialization implementations of

the superclass, since it will also read/write some information to the stream.

197

11. Designing a custom integrator plugin 11.1. Basic implementation

We haven’t used the manager parameter yet, so here is a quick overview of what it does: if many

cases, we don’t just want to serialize a single class, but a whole graph of objects. Some may be refer-

enced many times from diferent places, and potentially there are even cycles. If we just naively called

the serialization and unserialization implementation of members recursively within each class, we’d

waste much bandwitdth and potentially end up stuck in an ininite recursion.

his is where the instance manager comes in. Every time you want to serialize a heap-allocated

object (suppose it is of type SomeClass), instead of calling its serialize method, write

ref<SomeClass> myObject = ...;

manager->serialize(stream, myObject.get());

Later, to unserialize the object from a stream again, write

ref<SomeClass> myObject = static_cast<SomeClass *>(manager->getInstance(stream));

Behind the scenes, the object manager adds annotations to the data stream, which ensure that you

will end up with the exact same reference graph on the remote side, while only one copy of every object

is transmitted and no ininite recursion can occur. But we digress – let’s go back to our integrator.

he last thing to add is a function, which returns an estimate for the radiance along a ray diferential:

here, we simply return the stored color

/// Query for an unbiased estimate of the radiance along <tt>r</tt>

Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {

return m_color;

}

Let’s try building the plugin: edit the SConstruct ile in the main directory, and add the following

line ater the comment ”# Integrators”:

plugins += env.SharedLibrary('plugins/myIntegrator', ['src/integrators/

myIntegrator.cpp'])

Ater calling, scons, you should be able to use your new integrator in parallel rendering jobs and

you’ll get something like this:

198

11. Designing a custom integrator plugin 11.2. Visualizing depth

hat is admittedly not very exciting — so let’s do some actual computation.

11.2. Visualizing depth

Add an instance variable Float m_maxDist; to the implementation. his will store the maximum

distance from the camera to any object, which is needed to map distances into the [0, 1] range. Note

the upper-case Float— this means that either a single- or a double-precision variable is substituted

based the compilation lags. his variable constitutes local state, thus it must not be forgotten in the

serialization- and unserialization routines: append

m_maxDist = stream->readFloat();

and

stream->writeFloat(m_maxDist);

to the unserialization constructor and the serializemethod, respectively.

We’ll conservatively bound the maximum distance by measuring the distance to all corners of the

bounding box, which encloses the scene. To avoid having to do this every time Li() is called, we can

override the preprocess function:

/// Preprocess function -- called on the initiating machine

bool preprocess(const Scene *scene, RenderQueue *queue,

const RenderJob *job, int sceneResID, int cameraResID,

int samplerResID) {

SamplingIntegrator::preprocess(scene, queue, job, sceneResID,

cameraResID, samplerResID);

const AABB &sceneAABB = scene->getAABB();

/* Find the camera position at t=0 seconds */

199

11. Designing a custom integrator plugin 11.2. Visualizing depth

Point cameraPosition = scene->getSensor()->getWorldTransform()->eval(0).

transformAffine(Point(0.0f));

m_maxDist = - std::numeric_limits<Float>::infinity();

for (int i=0; i<8; ++i)

m_maxDist = std::max(m_maxDist,

(cameraPosition - sceneAABB.getCorner(i)).length());

return true;

}

he bottom of this function should be relatively self-explanatory. he numerous arguments at the

top are related to the parallelization layer, which will be considered in more detail in the next section.

Briely, the render queue provides synchronization facilities for render jobs (e.g. one can wait for a

certain job to terminate). And the integer parameters are global resource identiiers. When a network

render job runs, many associated pieces of information (the scene, the camera, etc.) are wrapped into

global resource chunks shared amongst all nodes, and these can be referenced using such identiiers.

One important aspect of the preprocess function is that it is executed on the initiating node and

before any of the parallel rendering begins. his can be used to compute certain things only once.

Any information updated here (such as m_maxDist) will be forwarded to the other nodes before the

rendering begins.

Now, replace the body of the Limethod with

if (rRec.rayIntersect(r)) {

Float distance = rRec.its.t;

return Spectrum(1.0f - distance/m_maxDist) * m_color;

}

return Spectrum(0.0f);

and the distance renderer is done!

here are a few more noteworthy details: irst of all, the “usual” way to intersect a ray against the scene

actually works like this:

Intersection its;

200

11. Designing a custom integrator plugin 11.3. Nesting

Ray ray = ...;

if (scene->rayIntersect(ray, its)) {

/* Do something with the intersection stored in 'its' */

}

As you can see, we did something slightly diferent in the distance renderer fragment above (we called

RadianceQueryRecord::rayIntersect() on the supplied parameter rRec), and the reason for

this is nesting.

11.3. Nesting

he idea of of nesting is that sampling-based rendering techniques can be embedded within each

other for added lexibility: for instance, one might concoct a 1-bounce indirect rendering technique

complete with irradiance caching and adaptive integration simply by writing the following into a

scene XML ile:

<!-- Adaptively integrate using the nested technique -->

<integrator type="adaptive">

<!-- Irradiance caching + final gathering with the nested technique -->

<integrator type="irrcache">

<!-- Simple direct illumination technique -->

<integrator type="direct">

</integrator>

</integrator>

To support this kind of complex interaction, some information needs to be passed between the inte-

grators, and the RadianceQueryRecord parameter of the function SamplingIntegrator::Li is

used for this.

his brings us back to the odd way of computing an intersection a moment ago: the reason why

we didn’t just do this by calling scene->rayIntersect() is that our technique might actually be

nested within a parent technique, which has already computed this intersection. To avoid wasting

resources, the function rRec.rayIntersect irst determines whether an intersection record has

already been provided. If yes, it does nothing. Otherwise, it takes care of computing one.

he radiance query record also lists the particular types of radiance requested by the parent inte-

grator – your implementation should respect these as much as possible. Your overall code might for

example be structured like this:

Spectrum Li(const RayDifferential &r, RadianceQueryRecord &rRec) const {

Spectrum result;

if (rRec.type & RadianceQueryRecord::EEmittedRadiance) {

// Emitted surface radiance contribution was requested

result += ...;

}

if (rRec.type & RadianceQueryRecord::EDirectRadiance) {

// Direct illumination contribution was requested

result += ...;

}

...

return result;

}

201

12. Parallelization layer 12. Parallelization layer

12. Parallelization layer

Mitsuba is built on top of a lexible parallelization layer, which spreads out various types of compu-

tation over local and remote cores. he guiding principle is that if an operation can potentially take

longer than a few seconds, it ought to use all the cores it can get.

Here, we will go through a basic example, which will hopefully provide suicient intuition to realize

more complex tasks. To obtain good (i.e. close to linear) speedups, the parallelization layer depends

on several key assumptions of the task to be parallelized:

• he task can easily be split up into a discrete number of work units, which requires a negligible

amount of computation.

• Each work unit is small in footprint so that it can easily be transferred over the network or

shared memory.

• A work unit constitutes a signiicant amount of computation, which by far outweighs the cost

of transmitting it to another node.

• he work result obtained by processing a work unit is again small in footprint, so that it can

easily be transferred back.

• Merging all work results to a solution of the whole problem requires a negligible amount of

additional computation.

his essentially corresponds to a parallel version of Map (one part of Map&Reduce) and is ideally

suited for most rendering workloads.

he example we consider here computes a ROT13 “encryption” of a string, which most certainly

violates the “signiicant amount of computation” assumption. It was chosen due to the inherent par-

allelism and simplicity of this task. While of course over-engineered to the extreme, the example

hopefully communicates how this framework might be used in more complex scenarios.

We will implement this program as a plugin for the utility launcher mtsutil, which frees us from

having to write lots of code to set up the framework, prepare the scheduler, etc.

We start by creating the utility skeleton ile src/utils/rot13.cpp:

#include <mitsuba/render/util.h>

MTS_NAMESPACE_BEGIN

class ROT13Encoder : public Utility {

public:

int run(int argc, char **argv) {

cout << "Hello world!" << endl;

return 0;

}

MTS_DECLARE_UTILITY()

};

MTS_EXPORT_UTILITY(ROT13Encoder, "Perform a ROT13 encryption of a string")

MTS_NAMESPACE_END

202

12. Parallelization layer 12. Parallelization layer

he ile must also be added to the build system: insert the line

plugins += env.SharedLibrary('plugins/rot13', ['src/utils/rot13.cpp'])

into the SConscript (near the comment “Build the plugins – utilities”). Ater compiling

using scons, the mtsutil binary should automatically pick up your new utility plugin:

$ mtsutil

..

The following utilities are available:

addimages Generate linear combinations of EXR images

rot13 Perform a ROT13 encryption of a string

It can be executed as follows:

$ mtsutil rot13

2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:276] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob

2010-08-16 18:38:27 INFO main [src/mitsuba/mtsutil.cpp:350] Loading utility "

rot13" ..

Hello world!

Our approach for implementing distributed ROT13 will be to treat each character as an indpendent

work unit. Since the ordering is lost when sending out work units, we must also include the position

of the character in both the work units and the work results.

All of the relevant interfaces are contained in include/mitsuba/core/sched.h. For reference,

here are the interfaces of WorkUnit and WorkResult:

/**

* Abstract work unit. Represents a small amount of information

* that encodes part of a larger processing task.

*/

class MTS_EXPORT_CORE WorkUnit : public Object {

public:

/// Copy the content of another work unit of the same type

virtual void set(const WorkUnit *workUnit) = 0;

/// Fill the work unit with content acquired from a binary data stream

virtual void load(Stream *stream) = 0;

/// Serialize a work unit to a binary data stream

virtual void save(Stream *stream) const = 0;

/// Return a string representation

virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()

protected:

/// Virtual destructor

virtual ~WorkUnit() { }

};

/**

* Abstract work result. Represents the information that encodes

203

12. Parallelization layer 12. Parallelization layer

* the result of a processed <tt>WorkUnit</tt> instance.

*/

class MTS_EXPORT_CORE WorkResult : public Object {

public:

/// Fill the work result with content acquired from a binary data stream

virtual void load(Stream *stream) = 0;

/// Serialize a work result to a binary data stream

virtual void save(Stream *stream) const = 0;

/// Return a string representation

virtual std::string toString() const = 0;

MTS_DECLARE_CLASS()

protected:

/// Virtual destructor

virtual ~WorkResult() { }

};

In our case, the WorkUnit implementation then looks like this:

class ROT13WorkUnit : public WorkUnit {

public:

void set(const WorkUnit *workUnit) {

const ROT13WorkUnit *wu =

static_cast<const ROT13WorkUnit *>(workUnit);

m_char = wu->m_char;

m_pos = wu->m_pos;

}

void load(Stream *stream) {

m_char = stream->readChar();

m_pos = stream->readInt();

}

void save(Stream *stream) const {

stream->writeChar(m_char);

stream->writeInt(m_pos);

}

std::string toString() const {

std::ostringstream oss;

oss << "ROT13WorkUnit[" << endl

<< " char = '" << m_char << "'," << endl

<< " pos = " << m_pos << endl

<< "]";

return oss.str();

}

inline char getChar() const { return m_char; }

inline void setChar(char value) { m_char = value; }

inline int getPos() const { return m_pos; }

204

12. Parallelization layer 12. Parallelization layer

inline void setPos(int value) { m_pos = value; }

MTS_DECLARE_CLASS()

private:

char m_char;

int m_pos;

};

MTS_IMPLEMENT_CLASS(ROT13WorkUnit, false, WorkUnit)

he ROT13WorkResult implementation is not reproduced since it is almost identical (except that it

doesn’t need the set method). he similarity is not true in general: for most algorithms, the work

unit and result will look completely diferent.

Next, we need a class, which does the actual work of turning a work unit into a work result (a

subclass of WorkProcessor). Again, we need to implement a range of support methods to enable

the various ways in which work processor instances will be submitted to remote worker nodes and

replicated amongst local threads.

class ROT13WorkProcessor : public WorkProcessor {

public:

/// Construct a new work processor

ROT13WorkProcessor() : WorkProcessor() { }

/// Unserialize from a binary data stream (nothing to do in our case)

ROT13WorkProcessor(Stream *stream, InstanceManager *manager)

: WorkProcessor(stream, manager) { }

/// Serialize to a binary data stream (nothing to do in our case)

void serialize(Stream *stream, InstanceManager *manager) const {

}

ref<WorkUnit> createWorkUnit() const {

return new ROT13WorkUnit();

}

ref<WorkResult> createWorkResult() const {

return new ROT13WorkResult();

}

ref<WorkProcessor> clone() const {

return new ROT13WorkProcessor(); // No state to clone in our case

}

/// No internal state, thus no preparation is necessary

void prepare() { }

/// Do the actual computation

void process(const WorkUnit *workUnit, WorkResult *workResult,

const bool &stop) {

const ROT13WorkUnit *wu

= static_cast<const ROT13WorkUnit *>(workUnit);

ROT13WorkResult *wr = static_cast<ROT13WorkResult *>(workResult);

205

12. Parallelization layer 12. Parallelization layer

wr->setPos(wu->getPos());

wr->setChar((std::toupper(wu->getChar()) - 'A' + 13) % 26 + 'A');

}

MTS_DECLARE_CLASS()

};

MTS_IMPLEMENT_CLASS_S(ROT13WorkProcessor, false, WorkProcessor)

Since our work processor has no state, most of the implementations are rather trivial. Note the stop

ield in the process method. his ield is used to abort running jobs at the users requests, hence it

is a good idea to periodically check its value during lengthy computations.

Finally, we need a so-called parallel process instance, which is responsible for creating work units

and stitching work results back into a solution of the whole problem. he ROT13 implementation

might look as follows:

class ROT13Process : public ParallelProcess {

public:

ROT13Process(const std::string &input) : m_input(input), m_pos(0) {

m_output.resize(m_input.length());

}

ref<WorkProcessor> createWorkProcessor() const {

return new ROT13WorkProcessor();

}

std::vector<std::string> getRequiredPlugins() {

std::vector<std::string> result;

result.push_back("rot13");

return result;

}

EStatus generateWork(WorkUnit *unit, int worker /* unused */) {

if (m_pos >= (int) m_input.length())

return EFailure;

ROT13WorkUnit *wu = static_cast<ROT13WorkUnit *>(unit);

wu->setPos(m_pos);

wu->setChar(m_input[m_pos++]);

return ESuccess;

}

void processResult(const WorkResult *result, bool cancelled) {

if (cancelled) // indicates a work unit, which was

return; // cancelled partly through its execution

const ROT13WorkResult *wr =

static_cast<const ROT13WorkResult *>(result);

m_output[wr->getPos()] = wr->getChar();

}

inline const std::string &getOutput() {

return m_output;

}

206

12. Parallelization layer 12. Parallelization layer

MTS_DECLARE_CLASS()

public:

std::string m_input;

std::string m_output;

int m_pos;

};

MTS_IMPLEMENT_CLASS(ROT13Process, false, ParallelProcess)

he generateWork method produces work units until we have moved past the end of the string,

ater which it returns the status code EFailure. Note the method getRequiredPlugins(): this

is necessary to use the utility across machines. When communicating with another node, it ensures

that the remote side loads the ROT13* classes at the right moment.

To actually use the ROT13 encoder, we must irst launch the newly created parallel process from

the main utility function (the ‘Hello World’ code we wrote earlier). We can adapt it as follows:

int run(int argc, char **argv) {

if (argc < 2) {

cout << "Syntax: mtsutil rot13 <text>" << endl;

return -1;

}

ref<ROT13Process> proc = new ROT13Process(argv[1]);

ref<Scheduler> sched = Scheduler::getInstance();

/* Submit the encryption job to the scheduler */

sched->schedule(proc);

/* Wait for its completion */

sched->wait(proc);

cout << "Result: " << proc->getOutput() << endl;

return 0;

}

Ater compiling everything using scons, a simple example involving the utility would be to encode

a string (e.g. SECUREBYDESIGN), while forwarding all computation to a network machine. (-p0

disables all local worker threads). Adding a verbose lag (-v) shows some additional scheduling

information:

$ mtsutil -vc feynman -p0 rot13 SECUREBYDESIGN

2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:201] Mitsuba version 0.1.1,

Copyright (c) 2010 Wenzel Jakob

2010-08-17 01:35:46 INFO main [SocketStream] Connecting to "feynman:7554"

2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0_r"

2010-08-17 01:35:46 DEBUG main [RemoteWorker] Connection to "feynman" established

(2 cores).

2010-08-17 01:35:46 DEBUG main [Scheduler] Starting ..

2010-08-17 01:35:46 DEBUG main [Thread] Spawning thread "net0"

2010-08-17 01:35:46 INFO main [src/mitsuba/mtsutil.cpp:275] Loading utility "

rot13" ..

207

12. Parallelization layer 12. Parallelization layer

2010-08-17 01:35:46 DEBUG main [Scheduler] Scheduling process 0: ROT13Process[

unknown]..

2010-08-17 01:35:46 DEBUG main [Scheduler] Waiting for process 0

2010-08-17 01:35:46 DEBUG net0 [Scheduler] Process 0 has finished generating work

2010-08-17 01:35:46 DEBUG net0_r[Scheduler] Process 0 is complete.

Result: FRPHEROLQRFVTA

2010-08-17 01:35:46 DEBUG main [Scheduler] Pausing ..

2010-08-17 01:35:46 DEBUG net0 [Thread] Thread "net0" has finished

2010-08-17 01:35:46 DEBUG main [Scheduler] Stopping ..

2010-08-17 01:35:46 DEBUG main [RemoteWorker] Shutting down

2010-08-17 01:35:46 DEBUG net0_r[Thread] Thread "net0_r" has finished

208

13. Python integration 13. Python integration

13. Python integration

A recent feature of Mitsuba is a Python interface to the renderer API. While the interface is still

limited at this point, it can already be used for many useful purposes. To access the API, start your

Python interpreter and enter

import mitsuba

Mac OS: For this to work on MacOS X, you will irst have to run the “Apple Menu→Command-line

access” menu item from within Mitsuba. In the unlikely case that you run into shared library loading

issues (this is taken care of by default), you may have to set the LD_LIBRARY_PATH environment

variable before starting Python so that it points to where the Mitsuba libraries are installed (e.g. the

Mitsuba.app/Contents/Frameworks directory).

Windows and Linux: On Windows and non-packaged Linux builds, you may have to explicitly

specify the required extension search path before issuing the import command, e.g.:

import os, sys

Specify the extension search path on Linux/Windows (may vary depending on your

setup. If you compiled from source, 'path-to-mitsuba-directory' should be the

'dist' subdirectory)

NOTE: On Windows, specify these paths using FORWARD slashes (i.e. '/' instead of

'\' to avoid pitfalls with string escaping)

Configure the search path for the Python extension module

sys.path.append('path-to-mitsuba-directory/python/<python version, e.g. 2.7>')

Ensure that Python will be able to find the Mitsuba core libraries

os.environ['PATH'] = 'path-to-mitsuba-directory' + os.pathsep + os.environ['PATH']

import mitsuba

In rare cases when running on Linux, it may also be necessary to set the LD_LIBRARY_PATH environ-

ment variable before starting Python so that it points to where the Mitsuba core libraries are installed.

For an overview of the currently exposed API subset, please refer to the following page: http:

//www.mitsuba-renderer.org/api/group__libpython.html.

13.0.1. Accessing signatures in an interactive Python shell

he plugin exports comprehensive Python-style docstrings, hence the following is an alternative and

convenient way of getting information on classes, function, or entire namespaces when running an

interactive Python shell.

>>> help(mitsuba.core.Bitmap) # (can be applied to namespaces, classes, functions,

etc.)

class Bitmap(Object)

| Method resolution order:

209

http://www.mitsuba-renderer.org/api/group__libpython.html
http://www.mitsuba-renderer.org/api/group__libpython.html

13. Python integration 13.1. Basics

| Bitmap

| Object

| Boost.Python.instance

| __builtin__.object

|

| Methods defined here:

| __init__(...)

| __init__((object)arg1, (EPixelFormat)arg2, (EComponentFormat)arg3, (

Vector2i)arg4) -> None :

| C++ signature :

| void __init__(_object*,mitsuba::Bitmap::EPixelFormat,mitsuba::

Bitmap::EComponentFormat,mitsuba::TVector2<int>)

|

| __init__((object)arg1, (EFileFormat)arg2, (Stream)arg3) -> None :

| C++ signature :

| void __init__(_object*,mitsuba::Bitmap::EFileFormat,mitsuba::

Stream*)

|

| clear(...)

| clear((Bitmap)arg1) -> None :

| C++ signature :

| void clear(mitsuba::Bitmap {lvalue})

...

he docstrings list the currently exported functionality, as well as C++ and Python signatures, but

they don’t document what these functions actually do. he web API documentation is the preferred

source of this information.

13.1. Basics

Generally, the Python API tries to mimic the C++ API as closely as possible. Where applicable, the

Python classes and methods replicate overloaded operators, overridable virtual function calls, and

default arguments. Under rare circumstances, some features are inherently non-portable due to fun-

damental diferences between the two programming languages. In this case, the API documentation

will contain further information.

Mitsuba’s linear algebra-related classes are usable with essentially the same syntax as their C++

versions — for example, the following snippet creates and rotates a unit vector.

import mitsuba

from mitsuba.core import *

Create a normalized direction vector

myVector = normalize(Vector(1.0, 2.0, 3.0))

90 deg. rotation around the Y axis

trafo = Transform.rotate(Vector(0, 1, 0), 90)

Apply the rotation and display the result

print(trafo * myVector)

210

13. Python integration 13.2. Recipes

13.2. Recipes

he following section contains a series of “recipes” on how to do certain things with the help of the

Python bindings.

13.2.1. Loading a scene

he following script demonstrates how to use the FileResolver and SceneHandler classes to load

a Mitsuba scene from an XML ile:

import mitsuba

from mitsuba.core import *

from mitsuba.render import SceneHandler

Get a reference to the thread's file resolver

fileResolver = Thread.getThread().getFileResolver()

Register any searchs path needed to load scene resources (optional)

fileResolver.appendPath('<path to scene directory>')

Optional: supply parameters that can be accessed

by the scene (e.g. as $myParameter)

paramMap = StringMap()

paramMap['myParameter'] = 'value'

Load the scene from an XML file

scene = SceneHandler.loadScene(fileResolver.resolve("scene.xml"), paramMap)

Display a textual summary of the scene's contents

print(scene)

13.2.2. Rendering a loaded scene

Once a scene has been loaded, it can be rendered as follows:

from mitsuba.core import *

from mitsuba.render import RenderQueue, RenderJob

import multiprocessing

scheduler = Scheduler.getInstance()

Start up the scheduling system with one worker per local core

for i in range(0, multiprocessing.cpu_count()):

scheduler.registerWorker(LocalWorker('wrk%i' % i))

scheduler.start()

Create a queue for tracking render jobs

queue = RenderQueue()

scene.setDestinationFile('renderedResult')

211

13. Python integration 13.2. Recipes

Create a render job and insert it into the queue

job = RenderJob('myRenderJob', scene, queue)

job.start()

Wait for all jobs to finish and release resources

queue.waitLeft(0)

queue.join()

Print some statistics about the rendering process

print(Statistics.getInstance().getStats())

13.2.3. Rendering over the network

To render over the network, you must irst set up one or more machines that run the mtssrv server

(see Section 5.3). A network node can then be registered with the scheduler as follows:

Connect to a socket on a named host or IP address

7554 is the default port of 'mtssrv'

stream = SocketStream('128.84.103.222', 7554)

Create a remote worker instance that communicates over the stream

remoteWorker = RemoteWorker('netWorker', stream)

scheduler = Scheduler.getInstance()

Register the remote worker (and any other potential workers)

scheduler.registerWorker(remoteWorker)

scheduler.start()

13.2.4. Constructing custom scenes from Python

Dynamically constructing Mitsuba scenes entails loading a series of external plugins, instantiating

them with custom parameters, and inally assembling them into an object graph. For instance, the

following snippet shows how to create a basic perspective sensor with a ilm that writes PNG images:

from mitsuba.core import *

pmgr = PluginManager.getInstance()

Encodes parameters on how to instantiate the 'perspective' plugin

sensorProps = Properties('perspective')

sensorProps['toWorld'] = Transform.lookAt(

Point(0, 0, -10), # Camera origin

Point(0, 0, 0), # Camera target

Vector(0, 1, 0) # 'up' vector

)

sensorProps['fov'] = 45.0

Encodes parameters on how to instantiate the 'ldrfilm' plugin

filmProps = Properties('ldrfilm')

filmProps['width'] = 1920

filmProps['height'] = 1080

212

13. Python integration 13.2. Recipes

Load and instantiate the plugins

sensor = pmgr.createObject(sensorProps)

film = pmgr.createObject(filmProps)

First configure the film and then add it to the sensor

film.configure()

sensor.addChild('film', film)

Now, the sensor can be configured

sensor.configure()

he above code fragment uses the plugin manager to construct a Sensor instance from an external

plugin named perspective.so/dll/dylib and adds a child object named film, which is a Film

instance loaded from the plugin ldrfilm.so/dll/dylib. Each time ater instantiating a plugin, all

child objects are added, and inally the plugin’s configure()method must be called.

Creating scenes in this manner ends up being rather laborious. Since Python comes with a pow-

erful dynamically-typed dictionary primitive, Mitsuba additionally provides a more “pythonic” alter-

native that makes use of this facility:

from mitsuba.core import *

pmgr = PluginManager.getInstance()

sensor = pmgr.create({

'type' : 'perspective',

'toWorld' : Transform.lookAt(

Point(0, 0, -10),

Point(0, 0, 0),

Vector(0, 1, 0)

),

'film' : {

'type' : 'ldrfilm',

'width' : 1920,

'height' : 1080

}

})

his code does exactly the same as the previous snippet. By the time PluginManager.create re-

turns, the object hierarchy has already been assembled, and the configure()method of every object

has been called.

Finally, here is an full example that creates a basic scene which can be rendered. It describes a

sphere lit by a point light, rendered using the direct illumination integrator.

from mitsuba.core import *

from mitsuba.render import Scene

scene = Scene()

Create a sensor, film & sample generator

scene.addChild(pmgr.create({

'type' : 'perspective',

'toWorld' : Transform.lookAt(

Point(0, 0, -10),

213

13. Python integration 13.2. Recipes

Point(0, 0, 0),

Vector(0, 1, 0)

),

'film' : {

'type' : 'ldrfilm',

'width' : 1920,

'height' : 1080

},

'sampler' : {

'type' : 'ldsampler',

'sampleCount' : 2

}

}))

Set the integrator

scene.addChild(pmgr.create({

'type' : 'direct'

}))

Add a light source

scene.addChild(pmgr.create({

'type' : 'point',

'position' : Point(5, 0, -10),

'intensity' : Spectrum(100)

}))

Add a shape

scene.addChild(pmgr.create({

'type' : 'sphere',

'center' : Point(0, 0, 0),

'radius' : 1.0,

'bsdf' : {

'type' : 'diffuse',

'reflectance' : Spectrum(0.4)

}

}))

scene.configure()

13.2.5. Taking control of the logging system

Many operations in Mitsuba will print one or more log messages during their execution. By default,

they will be printed to the console, which may be undesirable. Similar to the C++ side, it is possible

to deine custom Formatter and Appender classes to interpret and direct the low of these messages.

his is also useful to keep track of the progress of rendering jobs.

Roughly, a Formatter turns detailed information about a logging event into a human-readable

string, and a Appender routes it to some destination (e.g. by appending it to a ile or a log viewer in

a graphical user interface). Here is an example of how to activate such extensions:

import mitsuba

from mitsuba.core import *

214

13. Python integration 13.2. Recipes

class MyFormatter(Formatter):

def format(self, logLevel, sourceClass, sourceThread, message, filename, line):

return '%s (log level: %s, thread: %s, class %s, file %s, line %i)' % \

(message, str(logLevel), sourceThread.getName(), sourceClass,

filename, line)

class MyAppender(Appender):

def append(self, logLevel, message):

print(message)

def logProgress(self, progress, name, formatted, eta):

print('Progress message: ' + formatted)

Get the logger associated with the current thread

logger = Thread.getThread().getLogger()

logger.setFormatter(MyFormatter())

logger.clearAppenders()

logger.addAppender(MyAppender())

logger.setLogLevel(EDebug)

Log(EInfo, 'Test message')

13.2.6. Rendering a turntable animation with motion blur

Rendering a turntable animation is a fairly common task that is conveniently accomplished via the

Python interface. In a turntable video, the camera rotates around a completely static object or scene.

he following snippet does this for the material test ball scene downloadable on the main website,

complete with motion blur. It assumes that the scene and scheduler have been set up approriately

using one of the previous snippets.

sensor = scene.getSensor()

sensor.setShutterOpen(0)

sensor.setShutterOpenTime(1)

stepSize = 5

for i in range(0,360 / stepSize):

rotationCur = Transform.rotate(Vector(0, 0, 1), i*stepSize);

rotationNext = Transform.rotate(Vector(0, 0, 1), (i+1)*stepSize);

trafoCur = Transform.lookAt(rotationCur * Point(0,-6,4),

Point(0, 0, .5), rotationCur * Vector(0, 1, 0))

trafoNext = Transform.lookAt(rotationNext * Point(0,-6,4),

Point(0, 0, .5), rotationNext * Vector(0, 1, 0))

atrafo = AnimatedTransform()

atrafo.appendTransform(0, trafoCur)

atrafo.appendTransform(1, trafoNext)

atrafo.sortAndSimplify()

sensor.setWorldTransform(atrafo)

215

13. Python integration 13.2. Recipes

scene.setDestinationFile('frame_%03i.png' % i)

job = RenderJob('job_%i' % i, scene, queue)

job.start()

queue.waitLeft(0)

queue.join()

A useful property of this approach is that scene loading and initialization must only take place once.

Performance-wise, this compares favourably with running many separate rendering jobs, e.g. using

the mitsuba command-line executable.

216

14. Acknowledgments 14. Acknowledgments

14. Acknowledgments

I am indebted to my advisor Steve Marschner for allowing me to devote a signiicant amount of my

research time to this project. His insightful and encouraging suggestions have helped transform this

program into much more than I ever thought it would be.

he architecture of Mitsuba as well as some individual components are based on implementations

discussed in: Physically Based Rendering - From heory To Implementation by Matt Pharr and Greg

Humphreys.

Some of the GUI icons were taken from the Humanity icon set by Canonical Ltd. he material test

scene was created by Jonas Pilo, and the environment map it uses is courtesy of Bernhard Vogl.

he included index of refraction data iles for conductors are copied from PBRT. hey are origi-

nally from the Luxpop database (www.luxpop.com) and are based on data by Palik et al. [36] and

measurements of atomic scattering factors made by the Center For X-Ray Optics (CXRO) at Berkeley

and the Lawrence Livermore National Laboratory (LLNL).

he following people have kindly contributed code or bugixes:

• Miloŝ Haŝan

• Marios Papas

• Edgar Velázquez-Armendáriz

• Jirka Vorba

• Leonhard Grünschloß

Mitsuba makes heavy use of the following amazing libraries and tools:

• Qt 4 by Digia

• OpenEXR by Industrial Light & Magic

• Xerces-C++ by the Apache Foundation

• Eigen by Benoît Jacob and Gaël Guennebaud

• SSE math functions by Julien Pommier

• he Boost C++ class library

• GLEW by Milan Ikits, Marcelo E. Magallon and Lev Povalahev

• Mersenne Twister by Makoto Matsumoto and Takuji Nishimura

• Cubature by Steven G. Johnson

• COLLADA DOM by Sony Computer Entertainment

• libjpeg-turbo by Darrell Commander and others

• libpng by Guy Eric Schalnat, Andreas Dilger, Glenn Randers-Pehrson and others

• libply by Ares Lagae

217

www.luxpop.com

14. Acknowledgments 14. Acknowledgments

• BWToolkit by Brandon Walkin

• he SCons build system by the SCons Foundation

218

15. License 15. License

15. License

Mitsuba is licensed under the terms of Version 3 of the GNU General Public License, which is repro-

duced here in its entirety. he license itself is copyrighted © 2007 by the Free Sotware Foundation,

Inc. http://fsf.org/.

15.1. Preamble

he GNU General Public License is a free, copylet license for sotware and other kinds of works.

he licenses for most sotware and other practical works are designed to take away your freedom

to share and change the works. By contrast, the GNU General Public License is intended to guarantee

your freedom to share and change all versions of a program–to make sure it remains free sotware for

all its users. We, the Free Sotware Foundation, use the GNU General Public License for most of our

sotware; it applies also to any other work released this way by its authors. You can apply it to your

programs, too.

When we speak of free sotware, we are referring to freedom, not price. Our General Public Li-

censes are designed to make sure that you have the freedom to distribute copies of free sotware (and

charge for them if you wish), that you receive source code or can get it if you want it, that you can

change the sotware or use pieces of it in new free programs, and that you know you can do these

things.

To protect your rights, we need to prevent others from denying you these rights or asking you

to surrender the rights. herefore, you have certain responsibilities if you distribute copies of the

sotware, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass

on to the recipients the same freedoms that you received. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the

sotware, and (2) ofer you this License giving you legal permission to copy, distribute and/or modify

it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for

this free sotware. For both users’ and authors’ sake, the GPL requires that modiied versions be

marked as changed, so that their problems will not be attributed erroneously to authors of previous

versions.

Some devices are designed to deny users access to install or run modiied versions of the sotware

inside them, although the manufacturer can do so. his is fundamentally incompatible with the aim

of protecting users’ freedom to change the sotware. he systematic pattern of such abuse occurs in the

area of products for individuals to use, which is precisely where it is most unacceptable. herefore, we

have designed this version of the GPL to prohibit the practice for those products. If such problems

arise substantially in other domains, we stand ready to extend this provision to those domains in

future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by sotware patents. States should not allow patents

to restrict development and use of sotware on general-purpose computers, but in those that do, we

wish to avoid the special danger that patents applied to a free program could make it efectively propri-

etary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

he precise terms and conditions for copying, distribution and modiication follow.

219

15. License 15.2. Terms and Conditions

15.2. Terms and Conditions

0. Deinitions.

“his License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-

conductor masks.

“he Program” refers to any copyrightable work licensed under this License. Each licensee is

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. he resulting work is called a

“modiied version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodiied Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you

directly or secondarily liable for infringement under applicable copyright law, except executing

it on a computer or modifying a private copy. Propagation includes copying, distribution (with

or without modiication), making available to the public, and in some countries other activities

as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive

copies. Mere interaction with a user through a computer network, with no transfer of a copy,

is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes

a convenient and prominently visible feature that (1) displays an appropriate copyright notice,

and (2) tells the user that there is no warranty for the work (except to the extent that warranties

are provided), that licensees may convey the work under this License, and how to view a copy

of this License. If the interface presents a list of user commands or options, such as a menu, a

prominent item in the list meets this criterion.

1. Source Code.

he “source code” for a work means the preferred form of the work for making modiications

to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an oicial standard deined by a rec-

ognized standards body, or, in the case of interfaces speciied for a particular programming

language, one that is widely used among developers working in that language.

he “System Libraries” of an executable work include anything, other than the work as a whole,

that (a) is included in the normal form of packaging a Major Component, but which is not

part of that Major Component, and (b) serves only to enable use of the work with that Major

Component, or to implement a Standard Interface for which an implementation is available to

the public in source code form. A “Major Component”, in this context, means a major essential

component (kernel, window system, and so on) of the speciic operating system (if any) on

which the executable work runs, or a compiler used to produce the work, or an object code

interpreter used to run it.

he “Corresponding Source” for a work in object code form means all the source code needed

to generate, install, and (for an executable work) run the object code and to modify the work,

220

15. License 15.2. Terms and Conditions

including scripts to control those activities. However, it does not include the work’s System

Libraries, or general-purpose tools or generally available free programs which are used un-

modiied in performing those activities but which are not part of the work. For example, Cor-

responding Source includes interface deinition iles associated with source iles for the work,

and the source code for shared libraries and dynamically linked subprograms that the work

is speciically designed to require, such as by intimate data communication or control low

between those subprograms and other parts of the work.

he Corresponding Source need not include anything that users can regenerate automatically

from other parts of the Corresponding Source.

he Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,

and are irrevocable provided the stated conditions are met. his License explicitly airms your

unlimited permission to run the unmodiied Program. he output from running a covered

work is covered by this License only if the output, given its content, constitutes a covered work.

his License acknowledges your rights of fair use or other equivalent, as provided by copyright

law.

You may make, run and propagate covered works that you do not convey, without conditions

so long as your license otherwise remains in force. You may convey covered works to others for

the sole purpose of having them make modiications exclusively for you, or provide you with

facilities for running those works, provided that you comply with the terms of this License in

conveying all material for which you do not control copyright. hose thus making or running

the covered works for you must do so exclusively on your behalf, under your direction and

control, on terms that prohibit them from making any copies of your copyrighted material

outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated be-

low. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an efective technological measure under any appli-

cable law fulilling obligations under article 11 of the WIPO copyright treaty adopted on 20

December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-

nological measures to the extent such circumvention is efected by exercising rights under this

License with respect to the covered work, and you disclaim any intention to limit operation or

modiication of the work as a means of enforcing, against the work’s users, your or third parties’

legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,

provided that you conspicuously and appropriately publish on each copy an appropriate copy-

right notice; keep intact all notices stating that this License and any non-permissive terms

added in accord with section 7 apply to the code; keep intact all notices of the absence of any

warranty; and give all recipients a copy of this License along with the Program.

221

15. License 15.2. Terms and Conditions

You may charge any price or no price for each copy that you convey, and you may ofer support

or warranty protection for a fee.

5. Conveying Modiied Source Versions.

You may convey a work based on the Program, or the modiications to produce it from the

Program, in the form of source code under the terms of section 4, provided that you also meet

all of these conditions:

a) he work must carry prominent notices stating that you modiied it, and giving a relevant

date.

b) he work must carry prominent notices stating that it is released under this License and

any conditions added under section 7. his requirement modiies the requirement in

section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes

into possession of a copy. his License will therefore apply, along with any applicable

section 7 additional terms, to the whole of the work, and all its parts, regardless of how

they are packaged. his License gives no permission to license the work in any other way,

but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;

however, if the Program has interactive interfaces that do not display Appropriate Legal

Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not

by their nature extensions of the covered work, and which are not combined with it such as

to form a larger program, in or on a volume of a storage or distribution medium, is called an

“aggregate” if the compilation and its resulting copyright are not used to limit the access or

legal rights of the compilation’s users beyond what the individual works permit. Inclusion of

a covered work in an aggregate does not cause this License to apply to the other parts of the

aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, pro-

vided that you also convey the machine-readable Corresponding Source under the terms of

this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distri-

bution medium), accompanied by the Corresponding Source ixed on a durable physical

medium customarily used for sotware interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical dis-

tribution medium), accompanied by a written ofer, valid for at least three years and valid

for as long as you ofer spare parts or customer support for that product model, to give

anyone who possesses the object code either (1) a copy of the Corresponding Source for all

the sotware in the product that is covered by this License, on a durable physical medium

customarily used for sotware interchange, for a price no more than your reasonable cost

of physically performing this conveying of source, or (2) access to copy the Correspond-

ing Source from a network server at no charge.

222

15. License 15.2. Terms and Conditions

c) Convey individual copies of the object code with a copy of the written ofer to provide

the Corresponding Source. his alternative is allowed only occasionally and noncom-

mercially, and only if you received the object code with such an ofer, in accord with

subsection 6b.

d) Convey the object code by ofering access from a designated place (gratis or for a charge),

and ofer equivalent access to the Corresponding Source in the same way through the

same place at no further charge. You need not require recipients to copy the Correspond-

ing Source along with the object code. If the place to copy the object code is a network

server, the Corresponding Source may be on a diferent server (operated by you or a third

party) that supports equivalent copying facilities, provided you maintain clear directions

next to the object code saying where to ind the Corresponding Source. Regardless of

what server hosts the Corresponding Source, you remain obligated to ensure that it is

available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers

where the object code and Corresponding Source of the work are being ofered to the gen-

eral public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding

Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal prop-

erty which is normally used for personal, family, or household purposes, or (2) anything de-

signed or sold for incorporation into a dwelling. In determining whether a product is a con-

sumer product, doubtful cases shall be resolved in favor of coverage. For a particular product

received by a particular user, “normally used” refers to a typical or common use of that class

of product, regardless of the status of the particular user or of the way in which the particular

user actually uses, or expects or is expected to use, the product. A product is a consumer prod-

uct regardless of whether the product has substantial commercial, industrial or non-consumer

uses, unless such uses represent the only signiicant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization

keys, or other information required to install and execute modiied versions of a covered work

in that User Product from a modiied version of its Corresponding Source. he information

must suice to ensure that the continued functioning of the modiied object code is in no case

prevented or interfered with solely because modiication has been made.

If you convey an object code work under this section in, or with, or speciically for use in, a

User Product, and the conveying occurs as part of a transaction in which the right of possession

and use of the User Product is transferred to the recipient in perpetuity or for a ixed term

(regardless of how the transaction is characterized), the Corresponding Source conveyed under

this section must be accompanied by the Installation Information. But this requirement does

not apply if neither you nor any third party retains the ability to install modiied object code

on the User Product (for example, the work has been installed in ROM).

he requirement to provide Installation Information does not include a requirement to con-

tinue to provide support service, warranty, or updates for a work that has been modiied or

installed by the recipient, or for the User Product in which it has been modiied or installed.

Access to a network may be denied when the modiication itself materially and adversely afects

223

15. License 15.2. Terms and Conditions

the operation of the network or violates the rules and protocols for communication across the

network.

Corresponding Source conveyed, and Installation Information provided, in accord with this

section must be in a format that is publicly documented (and with an implementation available

to the public in source code form), and must require no special password or key for unpacking,

reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-

ceptions from one or more of its conditions. Additional permissions that are applicable to the

entire Program shall be treated as though they were included in this License, to the extent that

they are valid under applicable law. If additional permissions apply only to part of the Program,

that part may be used separately under those permissions, but the entire Program remains gov-

erned by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional

permissions from that copy, or from any part of it. (Additional permissions may be written

to require their own removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work, for which you have or

can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,

you may (if authorized by the copyright holders of that material) supplement the terms of this

License with terms:

a) Disclaiming warranty or limiting liability diferently from the terms of sections 15 and 16

of this License; or

b) Requiring preservation of speciied reasonable legal notices or author attributions in that

material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modiied

versions of such material be marked in reasonable ways as diferent from the original

version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material;

or

e) Declining to grant rights under trademark law for use of some trade names, trademarks,

or service marks; or

f) Requiring indemniication of licensors and authors of that material by anyone who con-

veys the material (or modiied versions of it) with contractual assumptions of liability to

the recipient, for any liability that these contractual assumptions directly impose on those

licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-

ing of section 10. If the Program as you received it, or any part of it, contains a notice stating that

it is governed by this License along with a term that is a further restriction, you may remove

that term. If a license document contains a further restriction but permits relicensing or con-

veying under this License, you may add to a covered work material governed by the terms of

224

15. License 15.2. Terms and Conditions

that license document, provided that the further restriction does not survive such relicensing

or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant

source iles, a statement of the additional terms that apply to those iles, or a notice indicating

where to ind the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately writ-

ten license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this Li-

cense. Any attempt otherwise to propagate or modify it is void, and will automatically ter-

minate your rights under this License (including any patent licenses granted under the third

paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright

holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and inally

terminates your license, and (b) permanently, if the copyright holder fails to notify you of the

violation by some reasonable means prior to 60 days ater the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-

right holder notiies you of the violation by some reasonable means, this is the irst time you

have received notice of violation of this License (for any work) from that copyright holder, and

you cure the violation prior to 30 days ater your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who

have received copies or rights from you under this License. If your rights have been terminated

and not permanently reinstated, you do not qualify to receive new licenses for the same material

under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.

Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-

peer transmission to receive a copy likewise does not require acceptance. However, nothing

other than this License grants you permission to propagate or modify any covered work. hese

actions infringe copyright if you do not accept this License. herefore, by modifying or propa-

gating a covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the

original licensors, to run, modify and propagate that work, subject to this License. You are not

responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially

all assets of one, or subdividing an organization, or merging organizations. If propagation of a

covered work results from an entity transaction, each party to that transaction who receives a

copy of the work also receives whatever licenses to the work the party’s predecessor in interest

had or could give under the previous paragraph, plus a right to possession of the Corresponding

225

15. License 15.2. Terms and Conditions

Source of the work from the predecessor in interest, if the predecessor has it or can get it with

reasonable eforts.

You may not impose any further restrictions on the exercise of the rights granted or airmed

under this License. For example, you may not impose a license fee, royalty, or other charge for

exercise of rights granted under this License, and you may not initiate litigation (including a

cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,

using, selling, ofering for sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program

or a work on which the Program is based. he work thus licensed is called the contributor’s

“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the con-

tributor, whether already acquired or hereater acquired, that would be infringed by some man-

ner, permitted by this License, of making, using, or selling its contributor version, but do not

include claims that would be infringed only as a consequence of further modiication of the

contributor version. For purposes of this deinition, “control” includes the right to grant patent

sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the

contributor’s essential patent claims, to make, use, sell, ofer for sale, import and otherwise run,

modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,

however denominated, not to enforce a patent (such as an express permission to practice a

patent or covenant not to sue for patent infringement). To “grant” such a patent license to a

party means to make such an agreement or commitment not to enforce a patent against the

party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding

Source of the work is not available for anyone to copy, free of charge and under the terms

of this License, through a publicly available network server or other readily accessible means,

then you must either (1) cause the Corresponding Source to be so available, or (2) arrange

to deprive yourself of the beneit of the patent license for this particular work, or (3) arrange,

in a manner consistent with the requirements of this License, to extend the patent license to

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for

the patent license, your conveying the covered work in a country, or your recipient’s use of the

covered work in a country, would infringe one or more identiiable patents in that country that

you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or prop-

agate by procuring conveyance of, a covered work, and grant a patent license to some of the

parties receiving the covered work authorizing them to use, propagate, modify or convey a spe-

ciic copy of the covered work, then the patent license you grant is automatically extended to

all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, pro-

hibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are

speciically granted under this License. You may not convey a covered work if you are a party

226

15. License 15.2. Terms and Conditions

to an arrangement with a third party that is in the business of distributing sotware, under

which you make payment to the third party based on the extent of your activity of conveying

the work, and under which the third party grants, to any of the parties who would receive the

covered work from you, a discriminatory patent license (a) in connection with copies of the

covered work conveyed by you (or copies made from those copies), or (b) primarily for and in

connection with speciic products or compilations that contain the covered work, unless you

entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other

defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-

dict the conditions of this License, they do not excuse you from the conditions of this License.

If you cannot convey a covered work so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not convey it at all.

For example, if you agree to terms that obligate you to collect a royalty for further conveying

from those to whom you convey the Program, the only way you could satisfy both those terms

and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Afero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine

any covered work with a work licensed under version 3 of the GNU Afero General Public Li-

cense into a single combined work, and to convey the resulting work. he terms of this License

will continue to apply to the part which is the covered work, but the special requirements of

the GNU Afero General Public License, section 13, concerning interaction through a network

will apply to the combination as such.

14. Revised Versions of this License.

he Free Sotware Foundation may publish revised and/or new versions of the GNU General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may difer in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speciies that a certain

numbered version of the GNU General Public License “or any later version” applies to it, you

have the option of following the terms and conditions either of that numbered version or of any

later version published by the Free Sotware Foundation. If the Program does not specify a ver-

sion number of the GNU General Public License, you may choose any version ever published

by the Free Sotware Foundation.

If the Program speciies that a proxy can decide which future versions of the GNU General Pub-

lic License can be used, that proxy’s public statement of acceptance of a version permanently

authorizes you to choose that version for the Program.

Later license versions may give you additional or diferent permissions. However, no additional

obligations are imposed on any author or copyright holder as a result of your choosing to follow

a later version.

15. Disclaimer of Warranty.

227

15. License 15.2. Terms and Conditions

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-

NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND

PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR

CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-

AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM-

AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING

BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM

TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER

PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local

legal efect according to their terms, reviewing courts shall apply local law that most closely

approximates an absolute waiver of all civil liability in connection with the Program, unless a

warranty or assumption of liability accompanies a copy of the Program in return for a fee.

18. End of Terms and Conditions / How to Apply hese Terms to Your New Programs:

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free sotware which everyone can redistribute and

change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of

each source ile to most efectively state the exclusion of warranty; and each ile should have at

least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

228

15. License 15.2. Terms and Conditions

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts

in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

he hypothetical commands show w and show c should show the appropriate parts of the

General Public License. Of course, your program’s commands might be diferent; for a GUI

interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a

“copyright disclaimer” for the program, if necessary. For more information on this, and how to

apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

he GNU General Public License does not permit incorporating your program into propri-

etary programs. If your program is a subroutine library, you may consider it more useful

to permit linking proprietary applications with the library. If this is what you want to do,

use the GNU Lesser General Public License instead of this License. But irst, please read

http://www.gnu.org/philosophy/why-not-lgpl.html.

229

References References

References

[1] Ashikhmin, M., and Shirley, P. An anisotropic phong BRDF model. Graphics tools: he jgt

editors’ choice (2005), 303.

[2] Blanco-Muriel, M., Alarcón-Padilla, D., López-Moratalla, T., and Lara-Coira, M.

Computing the solar vector. Solar Energy 70, 5 (2001), 431–441.

[3] Blinn, J. F. Simulation of wrinkled surfaces. In Proceedings of the 5th annual conference on

Computer graphics and interactive techniques (New York, NY, USA, 1978), SIGGRAPH ’78, ACM,

pp. 286–292.

[4] Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. Parallel poisson disk sampling with spec-

trum analysis on surfaces. ACM Trans. Graph. 29, 6 (Dec. 2010), 166:1–166:10.

[5] Cline, D., Talbot, J., and Egbert, P. Energy redistribution path tracing. ACM Trans. Graph.

24, 3 (July 2005), 1186–1195.

[6] Cook, R. L., Halstead, J., Planck, M., and Ryu, D. Stochastic simpliication of aggregate

detail. In ACM SIGGRAPH 2007 papers (New York, NY, USA, 2007), SIGGRAPH ’07, ACM.

[7] Dür, A. An Improved Normalization For he Ward Relectance Model. Journal of graphics, gpu,

and game tools 11, 1 (2006), 51–59.

[8] Eason, G., Veitch, A., Nisbet, R., and Turnbull, F. he theory of the back-scattering of light

by blood. Journal of Physics D: Applied Physics 11 (1978), 1463.

[9] Farrell, T., Patterson, M., and Wilson, B. A difusion theory model of spatially resolved,

steady-state difuse relectance for the noninvasive determination of tissue optical properties in

vivo. Medical physics 19 (1992), 879.

[10] Faure, H. Good permutations for extreme discrepancy. Journal of Number heory 42, 1 (1992),

47–56.

[11] Geisler-Moroder, D., and Dür, A. A new ward brdf model with bounded albedo. In Com-

puter Graphics Forum (2010), vol. 29, Wiley Online Library, pp. 1391–1398.

[12] Grünschloss, L., Raab, M., and Keller, A. Enumerating quasi-monte carlo point sequences

in elementary intervals. Monte Carlo and Quasi-Monte Carlo Methods (2010).

[13] Hachisuka, T., and Jensen, H. W. Stochastic progressive photon mapping. ACMTrans. Graph.

28, 5 (Dec. 2009), 141:1–141:8.

[14] Hachisuka, T., Ogaki, S., and Jensen, H. W. Progressive photon mapping. ACMTrans. Graph.

27, 5 (Dec. 2008), 130:1–130:8.

[15] Hanrahan, P., and Krueger, W. Relection from layered surfaces due to subsurface scattering.

In Proceedings of the 20th annual conference on Computer graphics and interactive techniques

(New York, NY, USA, 1993), SIGGRAPH ’93, ACM, pp. 165–174.

[16] Henyey, L., and Greenstein, J. Difuse radiation in the galaxy. he Astrophysical Journal 93

(1941), 70–83.

230

References References

[17] Irawan, P. Appearance of woven cloth. PhD thesis, Cornell University, Ithaca, NY, USA, 2008.

http://ecommons.library.cornell.edu/handle/1813/8331.

[18] Jakob, W., Arbree, A., Moon, J., Bala, K., and Marschner, S. A radiative transfer frame-

work for rendering materials with anisotropic structure. ACM Transactions on Graphics (TOG),

Proceedings of SIGGRAPH 2010 29, 4 (2010), 53.

[19] Jakob, W., and Marschner, S. Manifold Exploration: a Markov Chain Monte Carlo technique

for rendering scenes with diicult specular transport. ACM Trans. Graph. 31, 4 (July 2012), 58:1–

58:13.

[20] Jarosz, W., Zwicker, M., and Jensen, H. W. he beam radiance estimate for volumetric pho-

ton mapping. Computer Graphics Forum (Proceedings of Eurographics 2008) 27, 2 (Apr. 2008),

557–566.

[21] Jensen, H. W. Global illumination using photon maps. In Proceedings of the eurographics work-

shop on Rendering techniques ’96 (London, UK, UK, 1996), Springer-Verlag, pp. 21–30.

[22] Jensen, H. W., and Buhler, J. A rapid hierarchical rendering technique for translucent mate-

rials. In ACM SIGGRAPH 2005 Courses (New York, NY, USA, 2005), SIGGRAPH ’05, ACM.

[23] Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. A practical model for sub-

surface light transport. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques (New York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 511–518.

[24] Joe, S., and Kuo, F. Constructing sobol sequences with better two-dimensional projections.

SIAM Journal on Scientiic Computing 30 (2008), 2635.

[25] Kajiya, J., and Kay, T. Rendering fur with three dimensional textures. ACM Transactions on

Graphics 23, 3 (1989), 271–280.

[26] Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. A simple and robust mutation

strategy for the metropolis light transport algorithm. InComputerGraphics Forum (2002), vol. 21,

pp. 531–540.

[27] Keller, A. Instant radiosity. In Proceedings of the 24th annual conference on Computer graphics

and interactive techniques (New York, NY, USA, 1997), SIGGRAPH ’97, ACM Press/Addison-

Wesley Publishing Co., pp. 49–56.

[28] Kollig, T., and Keller, A. Eicient multidimensional sampling. Computer Graphics Forum

21, 3 (2002), 557–563.

[29] Krivánek, J., Bouatouch, K., Pattanaik, S. N., and Zára, J. Making radiance and irradiance

caching practical: Adaptive caching and neighbor clamping. In Proceedings of the Eurograph-

ics Symposium on Rendering Techniques, Nicosia, Cyprus, 2006 (2006), T. Akenine-Möller and

W. Heidrich, Eds., Eurographics Association, pp. 127–138.

[30] Lafortune, E. P., and Willems, Y. D. Using the modiied phong relectance model for physi-

cally based rendering. Tech. rep., Cornell University, 1994.

231

http://ecommons.library.cornell.edu/handle/1813/8331

References References

[31] Lukáš Hošek and Alexander Wilkie. An analytic model for full spectral sky-dome radiance.

ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2012) 31, 4 (July 2012).

[32] Mitchell, D. P., and Netravali, A. N. Reconstruction ilters in computer-graphics. In Pro-

ceedings of the 15th annual conference on Computer graphics and interactive techniques (New York,

NY, USA, 1988), SIGGRAPH ’88, ACM, pp. 221–228.

[33] Narasimhan, S. G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S. K., and Jensen,

H. W. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph.

25, 3 (July 2006), 1003–1012.

[34] Ngan, A., Durand, F., and Matusik, W. Experimental analysis of brdf models. In Proceedings

of the Eurographics Symposium on Rendering (2005), vol. 2, Eurographics Association.

[35] Oren, M., and Nayar, S. Generalization of Lambert’s relectance model. In Proceedings of the

21st annual conference on Computer graphics and interactive techniques (1994), ACM, pp. 239–

246.

[36] Palik, E., and Ghosh, G. Handbook of optical constants of solids. Academic press, 1998.

[37] Phong, B.-T. Illumination for Computer Generated Pictures. Communications of the ACM 18,

6 (1975), 311–317.

[38] Preetham, A., Shirley, P., and Smits, B. A practical analytic model for daylight. In Proceed-

ings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM

Press/Addison-Wesley Publishing Co., pp. 91–100.

[39] Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. Photographic tone reproduction for

digital images. ACM Transactions on Graphics 21, 3 (2002), 267–276.

[40] Saito, M., andMatsumoto, M. Simd-oriented fast mersenne twister: a 128-bit pseudorandom

number generator. Monte Carlo and Quasi-Monte Carlo Methods 2006 (2008), 607–622.

[41] Shirley, P., and Wang, C. Direct lighting calculation by monte carlo integration. In In proceed-

ings of the second EUROGRAPHICS workshop on rendering (1991), pp. 54–59.

[42] Smits, B. An RGB-to-spectrum conversion for relectances. Graphics tools: he jgt editors’

choice (2005), 291.

[43] Tabellion, E., and Lamorlette, A. An approximate global illumination system for computer

generated ilms. ACM Trans. Graph. 23, 3 (Aug. 2004), 469–476.

[44] Veach, E., and Guibas, L. Bidirectional estimators for light transport. In Eurographics Render-

ing Workshop Proceedings (1994).

[45] Veach, E., andGuibas, L. J. Metropolis light transport. In Proceedings of the 24th annual confer-

ence on Computer graphics and interactive techniques (New York, NY, USA, 1997), SIGGRAPH

’97, ACM Press/Addison-Wesley Publishing Co., pp. 65–76.

[46] Walter, B. Notes on the ward brdf. Tech. Rep. PCG-05-06, Program of Computer Graphics,

Cornell University, 2005.

232

References References

[47] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. Microfacet Models for Refrac-

tion through Rough Surfaces. Rendering Techniques (Proceedings EG Symposium on Rendering)

(2007).

[48] Ward, G., and Heckbert, P. Irradiance gradients. In Eurographics Rendering Workshop (May

1992), pp. 85–98.

[49] Ward, G. J. Measuring and modeling anisotropic relection. In Proceedings of the 19th annual

conference on Computer graphics and interactive techniques (New York, NY, USA, 1992), SIG-

GRAPH ’92, ACM, pp. 265–272.

[50] Ward, G. J., Rubinstein, F. M., and Clear, R. D. A ray tracing solution for difuse interrelec-

tion. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 85–92.

[51] Weidlich, A., and Wilkie, A. Arbitrarily layered micro-facet surfaces. In Proceedings of the

5th international conference on Computer graphics and interactive techniques in Australia and

Southeast Asia (New York, NY, USA, 2007), GRAPHITE ’07, ACM, pp. 171–178.

[52] Yuksel, C., Kaldor, J. M., James, D. L., and Marschner, S. Stitch meshes for modeling

knitted clothing with yarn-level detail. ACM Trans. Graph. 31, 4 (July 2012), 37:1–37:12.

[53] Zhao, S., Jakob, W., Marschner, S., and Bala, K. Building Volumetric Appearance Mod-

els of Fabric using Micro CT Imaging. ACM Transactions on Graphics (TOG), Proceedings of

SIGGRAPH 2011 30, 4 (2011), 53.

233

	I Using Mitsuba
	1 About Mitsuba
	2 Limitations
	3 License
	4 Compiling the renderer
	4.1 Common steps
	4.1.1 Build configurations
	4.1.2 Selecting a configuration

	4.2 Compilation flags
	4.3 Building on Debian or Ubuntu Linux
	4.3.1 Creating Debian or Ubuntu Linux packages
	4.3.2 Releasing Ubuntu packages

	4.4 Building on Fedora Core
	4.4.1 Creating Fedora Core packages

	4.5 Building on Arch Linux
	4.5.1 Creating Arch Linux packages

	4.6 Building on Windows
	4.6.1 Integration with the Visual Studio interface

	4.7 Building on Mac OS X

	5 Basic usage
	5.1 Interactive frontend
	5.2 Command line interface
	5.2.1 Passing parameters
	5.2.2 Writing partial images to disk
	5.2.3 Rendering an animation

	5.3 Direct connection server
	5.4 Utility launcher
	5.4.1 Tonemapper

	6 Scene file format
	6.1 Property types
	6.1.1 Numbers
	6.1.2 Strings
	6.1.3 Color spectra
	6.1.4 Vectors, Positions
	6.1.5 Transformations

	6.2 Animated transformations
	6.3 References
	6.4 Including external files
	6.5 Aliases

	7 Miscellaneous topics
	7.1 A word about color spaces
	7.1.1 Spectral rendering

	8 Plugin reference
	8.1 Shapes
	8.1.1 Cube intersection primitive (cube)
	8.1.2 Sphere intersection primitive (sphere)
	8.1.3 Cylinder intersection primitive (cylinder)
	8.1.4 Rectangle intersection primitive (rectangle)
	8.1.5 Disk intersection primitive (disk)
	8.1.6 Wavefront OBJ mesh loader (obj)
	8.1.7 PLY (Stanford Triangle Format) mesh loader (ply)
	8.1.8 Serialized mesh loader (serialized)
	8.1.9 Shape group for geometry instancing (shapegroup)
	8.1.10 Geometry instance (instance)
	8.1.11 Hair intersection shape (hair)

	8.2 Surface scattering models
	8.2.1 Smooth diffuse material (diffuse)
	8.2.2 Rough diffuse material (roughdiffuse)
	8.2.3 Smooth dielectric material (dielectric)
	8.2.4 Thin dielectric material (thindielectric)
	8.2.5 Rough dielectric material (roughdielectric)
	8.2.6 Smooth conductor (conductor)
	8.2.7 Rough conductor material (roughconductor)
	8.2.8 Smooth plastic material (plastic)
	8.2.9 Rough plastic material (roughplastic)
	8.2.10 Smooth dielectric coating (coating)
	8.2.11 Rough dielectric coating (roughcoating)
	8.2.12 Bump map modifier (bump)
	8.2.13 Modified Phong BRDF (phong)
	8.2.14 Anisotropic Ward BRDF (ward)
	8.2.15 Mixture material (mixturebsdf)
	8.2.16 Blended material (blendbsdf)
	8.2.17 Opacity mask (mask)
	8.2.18 Two-sided BRDF adapter (twosided)
	8.2.19 Irawan & Marschner woven cloth BRDF (irawan)
	8.2.20 Hanrahan-Krueger BSDF (hk)
	8.2.21 Diffuse transmitter (difftrans)

	8.3 Textures
	8.3.1 Bitmap texture (bitmap)
	8.3.2 Checkerboard (checkerboard)
	8.3.3 Procedural grid texture (gridtexture)
	8.3.4 Scaling passthrough texture (scale)
	8.3.5 Vertex color passthrough texture (vertexcolors)
	8.3.6 Wireframe texture (wireframe)
	8.3.7 Curvature texture (curvature)

	8.4 Subsurface scattering models
	8.4.1 Dipole-based subsurface scattering model (dipole)

	8.5 Participating media
	8.5.1 Homogeneous participating medium (homogeneous)
	8.5.2 Heterogeneous participating medium (heterogeneous)

	8.6 Phase functions
	8.6.1 Isotropic phase function (isotropic)
	8.6.2 Henyey-Greenstein phase function (hg)
	8.6.3 Rayleigh phase function (rayleigh)
	8.6.4 Kajiya-Kay phase function (kkay)
	8.6.5 Micro-flake phase function (microflake)
	8.6.6 Mixture phase function (mixturephase)

	8.7 Volume data sources
	8.7.1 Caching volume data source (volcache)
	8.7.2 Grid-based volume data source (gridvolume)
	8.7.3 Constant-valued volume data source (constvolume)

	8.8 Emitters
	8.8.1 Point light source (point)
	8.8.2 Area light (area)
	8.8.3 Spot light source (spot)
	8.8.4 Directional emitter (directional)
	8.8.5 Collimated beam emitter (collimated)
	8.8.6 Skylight emitter (sky)
	8.8.7 Sun emitter (sun)
	8.8.8 Sun and sky emitter (sunsky)
	8.8.9 Environment emitter (envmap)
	8.8.10 Constant environment emitter (constant)

	8.9 Sensors
	8.9.1 Perspective pinhole camera (perspective)
	8.9.2 Perspective camera with a thin lens (thinlens)
	8.9.3 Orthographic camera (orthographic)
	8.9.4 Telecentric lens camera (telecentric)
	8.9.5 Spherical camera (spherical)
	8.9.6 Irradiance meter (irradiancemeter)
	8.9.7 Radiance meter (radiancemeter)
	8.9.8 Fluence meter (fluencemeter)

	8.10 Integrators
	8.10.1 Ambient occlusion integrator (ao)
	8.10.2 Direct illumination integrator (direct)
	8.10.3 Path tracer (path)
	8.10.4 Simple volumetric path tracer (volpath_simple)
	8.10.5 Extended volumetric path tracer (volpath)
	8.10.6 Bidirectional path tracer (bdpt)
	8.10.7 Photon map integrator (photonmapper)
	8.10.8 Progressive photon mapping integrator (ppm)
	8.10.9 Stochastic progressive photon mapping integrator (sppm)
	8.10.10 Primary Sample Space Metropolis Light Transport (pssmlt)
	8.10.11 Path Space Metropolis Light Transport (mlt)
	8.10.12 Energy redistribution path tracing (erpt)
	8.10.13 Adjoint particle tracer (ptracer)
	8.10.14 Adaptive integrator (adaptive)
	8.10.15 Virtual Point Light integrator (vpl)
	8.10.16 Irradiance caching integrator (irrcache)

	8.11 Sample generators
	8.11.1 Independent sampler (independent)
	8.11.2 Stratified sampler (stratified)
	8.11.3 Low discrepancy sampler (ldsampler)
	8.11.4 Halton QMC sampler (halton)
	8.11.5 Hammersley QMC sampler (hammersley)
	8.11.6 Sobol QMC sampler (sobol)

	8.12 Films
	8.12.1 High dynamic range film (hdrfilm)
	8.12.2 Tiled high dynamic range film (tiledhdrfilm)
	8.12.3 Low dynamic range film (ldrfilm)
	8.12.4 MATLAB / Mathematica film (mfilm)

	8.13 Reconstruction filters
	8.13.1 Reconstruction filter comparison 1: frequency attenuation and aliasing
	8.13.2 Reconstruction filter comparison 2: ringing
	8.13.3 Specifying a reconstruction filter

	II Development guide
	9 Code structure
	10 Coding style
	11 Designing a custom integrator plugin
	11.1 Basic implementation
	11.2 Visualizing depth
	11.3 Nesting

	12 Parallelization layer
	13 Python integration
	13.0.1 Accessing signatures in an interactive Python shell
	13.1 Basics
	13.2 Recipes
	13.2.1 Loading a scene
	13.2.2 Rendering a loaded scene
	13.2.3 Rendering over the network
	13.2.4 Constructing custom scenes from Python
	13.2.5 Taking control of the logging system
	13.2.6 Rendering a turntable animation with motion blur

	14 Acknowledgments
	15 License
	15.1 Preamble
	15.2 Terms and Conditions

